Senin, 18 Mei 2009

PSIKOMETRI TEKNIK PENDINGIN

PENGKONDISIAN UDARA

Tujuan Instruksional Khusus

Mmahasiswa mampu melakukan perhitungan dan analisis pengkondisian udara. Cakupan dari pokok bahasan ini adalah prinsip pengkondisian udara, penggunaan diagram psikrometri, penghitungan beban pendinginan sensibel dan laten.

1. Prinsip Dasar Pengkondisian Udara

Untuk mencapai kenyamanan, kesehatan dan kesegaran hidup dalam rumah tinggal atau bangunan – bangunan bertingkat, khususnya di daerah beriklim tropis dengan udara yang panas dan tingkat kelembaban tinggi, diperlukan usaha untuk mendapatkan udara segar baik udara segar dari alam dan aliran udaran buatan. Udara yang nyaman mempunyai kecepatan tidak boleh lebih dari 5 km/jam dengan suhu/ temperatur kurang dari 30°C dan banyak mengandung O2.

Daerah di Indonesia kebanyakan kurang memberikan kenyamanan karena udaranya panas (23 -34°C), kotor (berdebu, berasap) dan angin tidak menentu, khususnya pada bangunan tinggi dimana angin mempunyai kecepatan tinggi. Karena keadaan alam yang demikian, maka diperlukan suatu cara untuk mendapatkan kenyamanan dengan menggunakan alat penyegaran udara (air condition).

Pengkondisian udara adalah perlakuan terhadap udara untuk mengatur suhu, kelembaban, kebersihan dan pendistribusiannya secara serentak guna mencapai kondisi nyaman yang diperlukan oleh orang yang berada di dalam suatu ruangan. Atau dapat didefinisikan suatu proses mendinginkan udara sehingga mencapai temperatur dan kelembaban yang ideal. Sistem pengkondisian udara pada umumnya dibagi menjadi 2 golongan utama :

  • Pengkondisian udara untuk kenyamanan kerja

  • Pengkondisian udara untuk industri

Sistem pengkondisian udara untuk industri dirancang untuk memperoleh suhu, kelembaban dan distribusi udara yang sesuai dengan yang dipersyaratkan oleh proses serta peralatan yang dipergunakan di dalam ruangan. Dengan adanya pengkondisian udara ini, diharapkan udara menjadi segar sehingga karyawan dapat bekerja dengan baik, pasien di rumah sakit menjadi lebih nyaman dan penghuni rumah tinggal menjadi nyaman

1.b. Komposisi utama sistem pengkondisian udara


Gambar 9.1. Sistem pengkondisian udara

Gambar 9.1. memperlihatkan komponen utama dari skema sistem pengkondisian.

Komponen sistem pengkondisian udara adalah:

  1. sistem pembangkit kalor, mesin refrigerasi, menara pendingin dan ketel uap
  2. sistem pipa: pipa air dan pipa refrigerasi dan pompa
  3. pengkondisian udara: saringan udara, pendingin udara, pemanas udara dan pelembab udara
  4. sistem saluran udara: kipas dan saluran udara

Komponen AC yang dilalui sirkkulasi udara

  • Fan (kipas udara) menggerakkan udara dari atau ke dalam ruangan. Udara yang dialirkan fan dapat berupa udara luar, udara ruangan atau gabungan dari udara luar dan udara ruangan. Jumlah aliran udara dan kecepatan udara harus diatur, agar memperoleh sirkulasi udara yang baik
  • Supply Duct (saluran udara keluar): untuk saluran udara dingin dari fan ke dalam ruangan
  • Supply out let (lubang keluar): untuk megatur arah aliran udara dari fan, sehingga udara terdistribusi ke seluruh ruangan. Untuk kenyamanan, jumlah out let turut menentukan
  • Ruangan yang didinginkan: ruangan harus tertutup, sehingga udara dingin dalam ruangan tidak terbuang keluar dan udara luar tidak masuk ke dalam ruangan.


Gambar 9.2 Diagram sistem pengkondisian udara

Prinsip pengkondisian udara adalah kondisi udara dalam ruangan dapat dalam keadaan sangat dingin, panas, lembab, kering, kecepatan udara tinggi atau tidak ada gerakan udara. Udara dingin digerakkan oleh Fan masuk reducting (saluran udara) dan melalui out let (lubang keluar) udara masuk ke dalam ruangan. Udara dari dalam ruangan kembali ke return out let (grile/ lubang isap) masuk ke ducting return (saluran kembali) dan melalui filter untuk pembersihan udara masuk melewati celah-celah/ permukaan coil evaporator (koil pendinginan) dan kembali digerakkan Fan (kipas udara).

2. Psikrometrik untuk Proses Air Conditioning

Psikometrik adalah ilmu yang mempelajari sifat-sifat termodinamika dari udara basah. Secara umum digunakan untuk mengilustrasikan dan menganalisis perubahan sifat termal dan karakteristik dari proses dan siklus sistem penyegaran udara (air conditioning). Diagram psikometrik adalah gambaran dari sifat-sifat termodinamika dari udara basah dan variasi proses sistem penyegaran udara dan siklus sistem penyegaran udara. Dari diagram psikometrik akan membantu dalam perhitungan dan menganalis kerja dan perpindahan energi dari proses dan siklus sistem penyegaran udara. Diagram psikrometrik ditunjukkan pada Gambar 9.3.


Gambar 9-3 Kurva Psikrometri

Proses yang terjadi pada udara dapat diganbarkan dalam bagan psikrometrik guna menjelaskan perubahan sifat-sifat udara yang penting seperti suhu, asio kelembaban dan entalpi dalm proses-proses tersebut. Beberapa proses dasar dapat ditunjukkan sebagai berikut

a. Proses Pemanasan dan pendinginan

Proses pemanasan dan pendinginan diartikan sebagai laju perpindahan kalor yang hanya disebabkan oleh perubahan suhu bola kering. Gambar 9.4. menunjukkan suatu perubahan suhu bola kering tanpa ada perubahan rasio kelembaban.


Gambar 9.4. Pemanasan dan pendinginan sensibel

b. Pelembaban adiabatik dan non adiabatik

Gambar 9.5. menunjukkan proses pelembaban yang dapat bersifat adiabatik (proses 1-2) atau dengan penambahan kalor (proses 1-3).


Gambar 9.5. Proses pelembaban udara

c. Pendinginan dan pengurangan kelembaban

Proses ini menurunkan suhu bola kering dan rasio kelembaban (Gambar 9.6). Proses ini terjadi pada koil pendingin atau alat penurun kelembaban.


Gambar 9.6. Pendinginan dan penurunan kelembaban

d. Pengurangan kelembaban kimiawi

Pada proses kimiawi (Gambar 9.7), uap air dari udara diserap atau diadsorbsi oleh suatu bahan higroskopik. Jika proses tersebut diberi penyekat kalor, sehingga entalpinya tetap, dan karena kelembabannya turun maka suhu udara tersebut harus naik.


Gambar 9.7. Proses penurunan kelembaban kimiawi

e. Pencampuran Udara

Campuran dua aliran udara adalah proses yang umum di dalam pengkondisian udara. Gambar 9.8 menunjukkan pencampuran udara antara w1 kg/detik udara dari keadaan 1 dengan w2 kg/detik udara dari keadaan 2. Hasilnya adalah kondisi 3, terlihat pada grafik psikrometrik dalam Gambar 9.9.


Gambar 9.8. Skema pencampuran udara


Gambar 9.9. Proses pencampuran udara pada kurva psikrometrik

Persamaan dasar untuk proses pencampuran ini adalah persamaan kesetimbangan energi dan keseimbangan massa. Persamaan keseimbangan energi adalah:

.........................................................................................

9-1


Dan persamaan kestimbangan massa air adalah:

.........................................................................................

9-2


Persamaan 9.1 dan 9.2 menunjukkan bahwa entalpi dan rasio kelembaban akhir adalah rata-rata dari entalpi dan rasio kelembaban udara saat masuk. Suatu pendekatan yang dilakukan oleh para ahli adalah bahwa suhu dan rasio kelembaban merupakan harga rata-rata udara masuk. Dengan pendekatan ini, titik yang terdapat pada grafik psikrometrik di atas menyatakan hasil dari suatu proses pencampuran yang terletak pada garis lurus yang menghubungkan titik-titik dari kondisi-kondisi pemasukan. Selanjutnya perbandingan jarak pada garis 1-3 dan 2-3 sama dengan perbandingan laju aliran w2 dan w1.

3. Perhitungan Beban Pendinginan

Tujuan utama sistem pengkondisian udara adalah mempertahankan keadaan udara didalam ruangan dan meliputi pengaturan temperatur, kelembaban relatif, kecepatan sirkulasi udara maupun kualitas udara. Sistem pengkondisian udara yang dipasang harus mempunyai kapasitas pendinginan yang tepat dan dapat dikendalikan sepanjang tahun. Kapasitas peralatan yang dapat diperhitungkan berdasarkan beban pendinginan setiap saat yang sebenarnya. Alat pengatur ditentukan berdasarkan kondisi yang diinginkan untuk mempertahankan selama beban puncak maupun sebagian. Beban puncak maupun sebagian tidak mungkin dapat diukur sehingga diperlukan prediksi melalui perhitungan yang mendekati keadaan yang sebenarnya.

Untuk maksud perkiraan tersebut diperlukan survei secara mendalam agar dapat dilakukan analisis yang teliti terhadap sumber-sumber beban pendinginan. Pemilihan peralatan yang ekonomis dan perancangan sistem yang tepat dapat dilakukan juga beban pendinginan sesaat yang sebenarnya dapat dihitung secara teliti.

Beban pendinginan sebenarnya adalah jumlah panas yang dipindahkan oleh sistem pengkondisian udara setiap hari. Beban pendinginan terdiri atas panas yang berasal dari ruang dan tambahan panas. Tambahan panas adalah jumlah panas setiap saat yang masuk kedalam ruang melalui kaca secara radiasi maupun melalui dinding akibat perbedaan temperatur. Pengaruh penyimpanan energi pada struktur bangunan perlu dipertimbangkan dalam perhitungan tambahan panas.

Perhitungan beban pendingin dapat diperoleh dari ASHRAE Handbook of Fundamentals. Tata cara perhitungan ini dapat menghasilkan sistem pengaturan udara yang terlalu besar yang mengakibatkan kurang efisien dalam pemakaian.
Dengan makin besarnya biaya-biaya pemakaian energi maka makin dirasa perlu mengadakan optimasi sistem pengaturan udara suatu gedung atau bangunan yang harus dihitung dari waktu kewaktu secara dinamis.


Gambar 9.10. Perhitungan beban pendinginan

Didalam kenyataannya kalor yang masuk kedalam gedung tidak tetap, karena faktor-faktor yang mempengaruhi kalor tersebut juga berubah-ubah. Sebagai contoh temperatur udara luar (lingkungan) nilainya merupakan fungsi waktu, yaitu maksimum disiang hari rendah dipagi dan sore hari, sedang minimumnya dimalam hari. Demikian pula kelengasan udara luar maupun radiasi surya yang mengenai dinding bangunan nilainya berubah terhadap waktu.

Untuk memperhitungkan pengaruh dari perubahan tersebut sangatlah sulit, bahkan mungkin tidak praktis untuk dihitung. Oleh karena itu untuk menentukan keadaan tak lunak (transien) akan dipilih faktor-faktor yang dominan. Disamping itu akan diperhatikan adanya absorbsi oleh struktur bangunan.

Dasar perhitungan beban pendinginan dilakukan dengan dua cara, yaitu:

  • perhitungan beban kalor puncak untuk menetapkan besarnya instalasi
  • perhitungan beban kalor sesaat, untuk mengetahui biaya operasi jangka pendek dan jangka panjang serta untuk mengetahui karakteristik dinamik dari instalasi yang bersangkutan.

Beban pendinginan merupakan jumlah panas yang dipindahkan oleh suatu sistem pengkondisian udara. Beban pendinginan terdiri dari panas yang berasal dari ruang pendingin dan tambahan panas dari bahan atau produk yang akan didinginkan. Tujuan perhitungan beban pendinginan adalah untuk menduga kapasitas mesin pendingin yang dibutuhkan untuk dapat mempertahankan keadaan optimal yang diinginkan dalam ruang.

Aspek-aspek fisik yang harus diperhatikan dalam perhitungan beban pendingin antara lain :
1. Orientasi gedung dengan mempertimbangkan pencahayaan dan pengaruh angin
2. Pengaruh emperan atau tirai jendela dan pantulan oleh tanah
3. Penggunaan ruang
4. Jumlah dan ukuran ruang
5. Beban dan ukuran semua bagian pembatas dinding
6. Jumlah dan aktivitas penghuni
7. Jumlah dan jenis lampu
8. Jumlah dan spesifikasi peralatan kerja
9. Udara infiltrasi dan ventilasi

Beban pendinginan suatu ruang berasal dari dua sumber, yaitu melalui sumber eksternal dan sumber internal.
a. Sumber panas eksternal antara lain :

  • Radiasi surya yang ditransmisikan melaui kaca
  • Radiasi surya yang mengenai dinding dan atap, dikonduksikan kedalam ruang dengan memperhitungkan efek penyimpangan melalui dinding
  • Panas Konduksi dan konveksi melalui pintu dan kaca jendela akibat perbedaan temperatur.
  • Panas karena infiltrasi oleh udara akibat pembukaan pintu dan melalui celah-celah jendela.
  • Panas karena ventilasi.


b. Sumber panas internal antara lain :

  • Panas karena penghuni
  • Panas karena lampu dan peralatan listrik
  • Panas yang ditimbulkan oleh peralatan lain

Beban pendinginan total merupakan jumlah beban pendinginan tiap ruang. Beban ruang tiap jam dipengaruhi oleh perubahan suhu udara luar, perubahan intensitas radiasi, surya dan efek penyimpanan panas pada struktur/dinding bagian luar bangunan gedung.

Dalam sistem pendingin dikenal dua macam panas atau kalor yaitu panas sensible (panas yang menyebabkan perubahan temperatur tanpa perubahan fase). Setiap sumber panas yang dapat menaikkan suhu ruangan ditandai dengan naiknya temperatur bola kering (Tdb) akan menambah beban panas sensible.

Panas laten yaitu : panas yang menyebabkan perubahan fase tanpa menyebabkan perubahan temperatur misalnya : kalor penguapan. Setiap sumber panas yang dapat menambah beban laten. Udara yang dimasukkan kedalam ruangan harus mempunyai kelembaban rendah agar dapat menyerap uap air (panas laten) dan temperatur yang rendah agar dapat menyerap panas dari berbagai sumber panas dalam ruangan (panas sensible), agar kondisi ruangan yang diinginkan dapat dipercepat.

Beban ini dapat diklasifikasikan sebagai berikut :

a. Penambahan beban sensible

  • Transmisi panas melalui bahan bangunan, melewati atap, dinding, kaca, partisi, langit-langit dan lantai
  • Radiasi sinar matahari
  • Panas dari penerangan atau lampu-lampu
  • Pancaran panas dari penghuni ruangan
  • Panas dari peralatan tambahan dari ruangan
  • Panas dari elektromotor

b. Penambahan panas laten

  • Panas dari penghuni ruangan
  • Panas dari peralatan ruangan

c. Ventilasi dan infiltrasi

  • Penambahan panas sensible akibat perbedaan temperatur udara dalam dan luar
  • Penambahan panas laten akibat kelembaban udara dalam dan luar

Beban pendinginan puncak (total heat load) adalah total panas yang harus diambil oleh suatu sistem pendingin. Secara umum terdiri dari

a. Panas konduksi (Q1)


Gambar 9.11. Skema perpindahan panas melalui dinding

Beban panas yang melalui dinding disebut sebagai beban kebocoran dinding, yaitu banyaknya panas yang bocor menembus dinding ruang dari bagian luar ke dalam. Karena tidak ada insulasi yang sempurna, maka akan selalu ada beban panas yang berasal dari luar ke dalam ruangan, karena suhu di dalam ruangan lebih rendah dari pada suhu di luar ruangan. Gambar 9.11. menunjukkan skema perpindahan panas melalui dinding..

Panas yang masuk melalui dinding dan atas:

.......................................................................................

9-3

dimana Q = jumlah panas (W)
U = koefisien perpindahan panas total (W/m2 K)
A = luas permukaan (m2)
 (to-ti) = perbedaan suhu dalam dan luar ruang pendingin (K)

koefisien perpindahan panas total (U) dihitung dengan persamaan:

..........................................

9-4


dimana x = tebal bahan insulasi (m)
k = konduktivitas termal bahan (W/m K)
h = koefisien perpindahan panas konveksi (W/m2 K)

b. Field heat (Q2)

Beban kalor yang dibawa oleh produk yang akan didinginkan atau disimpan:

.....................................................................................

9-5


dimana Q = jumlah panas (KJoule)
m = berat dari produk yang didinginkan (kg)
Cp= panas jenis dari produk di atas titik beku (KJoule/kg K)
ΔT= perubahan suhu produk (K)

c. Panas Respirasi (Q3)

Panas yang diperoleh dari produk sebagai akibat dari proses respirasi.

.......................................................

9-6

d. Beban lampu (Q4)

....................................................................................

9-7

e. Service load (Q5)

Service load adalah panas lain yang timbul dalam proses operasi pendinginan seperti kipas, operator, udara luar ketika pintu dibuka, motor listrik dan panas infiltrasi dari penyekat dan rak pendingin. Diperkirakan besarnya adalah sekitar 10% dari total konduksi panas, field heat dan panas respirasi.

Contoh soal:

1. Suatu campuran udara-uap bersuhu bola kering 30 °C dan rasio kelembaban 0.015. Hitunglah pada dua tekanan barometrik yang berbeda, 85 dan 101 kPa:

a. entalpi udara campuran
b. suhu pengembunanrasio

2. Dalam suatu unit pengkondisian udara, dimasukkan 3.5 m3/detik udara dengan suhu 27°C bola kering, kelembaban relatip 50 persen dan tekanan atmosfir standar. Udara keluar dengan keadaan suhu bola kering 13°C dan kelembaban relatif 90 persen. Dengan menggunakan sifat-sifat udara yang terdapat dalam kurva psikrometrik:

a. hitung kapasitas refrigerasi dengan satuan kilowatt
b. tentukan laju pemisahan air dan udara

3. Suatu aliran udara luar dicampur dengan aliran udara balik dalam suatu sistem pengkondisian udara yang bekerja pada tekanan 101 kPa. Laju aliran udara luar 2 kg/detik bersuhu bola kering 35°C dan suhu bola basah 25°C. Laju udara balik 3 kg/detik dengan suhu 24°C dan kelembaban relatif 50 persen. Tentukan:

a. entalpi udara campuran
b. rasio kelembaban udara campuran
c. suhu bola kering udara campuran yang ditentukan dari sifat-sifat yang ditunjukkan dalam bagian a dan b
d. suhu bola kering dengan mengukur suhu bola kering rata-rata arus masuk

4. Udara di dalam suatu ruangan bersuhu 30 oC dan RH 80%. Ukuran ruangan adalah 2 m x 3 m x 3 m. Dengan menggunakan diagram psikrometri tentukan:

  • Suhu bola basah ruangan.
  • Suhu titik embun ruangan.
  • Kelembaban mutlak ruangan.
  • Tekanan uap air di dalam ruangan.
  • Jumlah panas yang harus dipindahkan dari ruangan tersebut (hint. Tentukan volume jenis berdasarkan suhu rata-rata udara)

Test Formatip

1. Dapat dipahami apabila kelembaban mutlak di dalam ruang pendingin lebih rendah daripada kelembaban mutlak lingkungan. Akan tetapi, dapatkah anda jelaskan mengapa kelembaban relatif (RH) dalam ruang pendingin dapat mempunyai nilai yang lebih rendah daripada RH lingkungan? (Gunakan skema bagan psikrometrik)

2. Diketahui udara di titik 1 mempunyai kondisi suhu (bola kering): 35oC dengan RH: 60% sedangkan udara di titik 2 mempunyai kondisi kondisi suhu (bola kering): 22oC dengan RH: 90%. Dengan laju aliran masing-masing 2 kg/detik (dari titik 1) dan 3 kg/detik (dari titik 2) keduanya bercampur di titik 3. Hitunglah suhu (bola kering) dan RH di titik 3 dengan:


  • menggunakan diagram psikrometri, dan gambarkan sketsa pencampuran tersebut
  • menggunakan rumus pencampuran udara.

3. Bila udara dengan kondisi Tdb = 30oC dan RH=70% didinginkan sampai kondisi jenuh, dengan dua cara berikut:

  • Didinginkan pada kelembaban mutlak konstan
  • Didinginkan secara adiabatik

Berapa suhu udara setelah pendinginan pada (a) dan (b) ?

4. Jika udara yang bersuhu 30oC dengan RH 60%,

  • Didinginkan secara adiabatis sampai RH 90%, tentukan suhu udara bola kering, bola basah dan kelembaban mutlak dan perubahan entalpi
  • Didinginkan pada kelembaban mutlak yang konstan sampai kondisi RH 90%, tentukan suhu bola kering, suhu bola basah dan juga perubahan entalpi

5. Suhu udara yang masuk dalam suatu unit pendingin udara (AC) adalah 27°C bola kering, RH 50% dan debit 3.5m3/detik. Sedangkan udara yang keluar bersuhu 13°C dan RH 90%. Dengan menggunakan sifat-sifat udara yang terdapat dalam bagan psikrometrik, hitung:

  • kapasitas pendinginan (kilowatt)
  • laju pemisahan air dari udara (kg/detik)

6. Diketahui beban panas sensibel dan laten dalam ruang pendingin single zone secara berturut-turut adalah 60 dan 6 kW. Ruang tersebut dijaga dalam suhu 18oC dengan RH 50%. Kondisi udara lingkungan adalah suhu 30oC dengan RH =70%. Untuk keperluan ventilasi digunakan campuran udara lingkungan dengan udara resirkulasi dengan perbandingan 1:4. Tentukan kondisi udara sebelum melalui koil (evaporator) dan suhu udara setelah melalui koil.

7. Jika perolehan (beban) panas dalam suatu ruang yang menggunakan pengkondisian udara zone tunggal adalah sebagai berikut: panas sensibel 60 kW dan panas laten 5 kW. Kondisi udara yang diinginkan dari ruangan tersebut adalah 25oC dan RH 60%, sedangkan kondisi udara luar adalah 35oC dan RH 60%. Misalnya syarat ventilasi untuk ruangan tersebut adalah: udara luar : udara resirkulasi = 1 : 7. Tentukan: (a) suhu udara masuk koil pendingin dan (b) suhu udara meninggalkan koil pendingin.

SUHU RUANG nyaman pada manusia

PENDAHULUAN

Manusia membutuhkan lingkungan udara ruang yang nyaman (thermal comfort) untuk melakukan aktivitas secara optimal. Dengan adanya lingkungan udara yang nyaman ini manusia akan dapat beraktifitas dengan tenang dan sehat. Keadaan udara pada suatu ruang aktifitas sangat berpengaruh pada kondisi dan keadaan aktifitas itu. Bila dalam suatu ruangan yang panas dan pengap, manusia yang melakukan aktivitas di dalamnya tentu juga akan sangat terganggu dan tidak dapat melakukan aktifitasnya secara baik, dan ia merasa tidak kerasan.

Tubuh manusia seolah mesin panas yang terus-menerus menghasilkan panas. Kenyamanan termal langsung berhubungan dengan tubuh manusia yang selalu membuang panas yang berlebihan ini. Dalam keadaan-keadaan normal pemindahan panas ini terjadi antara tubuh dan udara disekitarnya. Namun demikian tubuh manusia memiliki pertahanan mekanisme alami yang terus-menerus bekerja untuk mempertahankan keseimbangan yang diperlukan antara timbulnya panas dan pembuangan panas yang dihasilkan. Mekanisme-mekanisme ini bekerja untuk mempertahankan suhu tubuh yang normal, dengan mengendalikan jumlah pembuangan panas tersebut. Bila laju kehilangan panas terlalu lambat, kita berkeringat. Keringat tersebut menambah laju kehilangan panas karena penguapan. Jika laju kehilangan panas terlalu cepat, kita mulai menggigil. Hal ini menyebabkan meningkatnya pembangkitan panas guna mengimbangi kehilangan panas.

Untuk mendapatkan kondisi ruangan yang memenuhi thermal comfort atau juga kondisi yang harus memenuhi persyaratan tertentu sesuai dengan yang kita inginkan, tanpa adanya ketergantungan dengan lingkungan luar, maka digunakan Penghawaan Buatan (Air Conditioning). Penghawaan buatan di sini memiliki pengertian bahwa udara dalam ruang dikondisikan berdasarkan beban kalor yang terjadi pada ruangan tersebut.

Salah satu jaringan distribusi penting dalam sebuah bangunan ialah sistem pengadaan udara yaitu sistem pemanasan/pendinginan, ventilasi, dan air conditioning (AC). Tujuan dari sistem pengendalian penghawaan ini adalah memberikan kondisi-kondisi suhu dan suasana yang nyaman, yang dicapai dengan mengolah dan mendistribusikan udara yang disejukan ke seluruh bangunan. Sebenarnya, pengolahan suhu hanya merupakan salah satu dari pengolahan pada udara sebelum disampaikan kepada para penghuni. Penyesuaian termal mengatur suhu, kelembaban, dan distribusi udara. Penyesuaian atmosfir mengatur kebersihan dan mengendalikan bau-bau.

Berbeda dengan jaringan-jaringan distribusi yang berlangsung di seluruh bangunan, sistem AC dan bagian-bagian komponennya menghendaki jumlah ruang yang cukup. Meskipun demikian pemahaman dan pengetahuan tentang implikasi-implikasi sistem AC untuk arsitektur sangat penting artinya untuk diperhatikan. Selain itu sistem ini pada dewasa ini mendapat perhatian khusus dalam penggunaannya dipandang dari sisi penghematan energi.

1.1. PENGERTIAN PENGHAWAAN BUATAN

Sebelum membahas tentang penghawaan buatan, kita perlu mengetahui bagaimana panas itu dapat menyebar atau berpindah. Ada empat cara pemindahan panas yakni:

a. Konduksi

Konduksi ialah pemindahan panas yang dihasilkan dari kontak langsung antara permukaan-permukaan. Konduksi terjadi hanya dengan menyentuh atau menghubungkan permukaan-permukaan yang panas atau sejuk.

b. Konveksi

Pemindahan panas berdasarkan gerakan cairan disebut konveksi. Dalam hal ini cairan adalah udara.

c. Evaporasi (penguapan)

Dalam pemindahan panas yang didasarkan pada evaporasi, sumber panas hanya dapat kehilangan panas. Misalnya panas yang dihasilkan oleh tubuh manusia, kelembaban dipermukaan kulit menguap ketika udara melintasi tubuh.

d. Radiasi.

Radiasi ialah pemindahan panas atas dasar gelombang-gelombang elektromagnetis. Misalnya tubuh manusia akan mendapat panas pancaran dari setiap permukaan dari suhu yang lebih tinggi dan ia akan kehilangan panas atau memancarkan panas kepada setiap obyek atau permukaan yang lebih sejuk dari tubuh manusia itu. Panas pancaran yang diperoleh atau hilang, tidak dipengaruhi oleh gerakan udara, juga tidak oleh suhu udara antara permukaan-permukaan atau obyek-obyek yang memancar.

Jumlah keseluruhan panas pindahan yang dihasilkan oleh masing-masing cara hampir seluruhnya ditentukan oleh kondisi-kondisi lingkungan. Umpamanya, udara yang jenuh tak dapat menerima kelembaban tubuh; jadi pemindahan panas tak dapat terjadi melalui penguapan. Pengondisian suatu ruang seharusnya meningkatkan laju kehilangan panas bila para penghuni terlalu panas dan mengurangi laju kehilangan panas bila mereka terlalu dingin. Tujuan ini tercapai dengan mengolah dan menyampaikan udara yang nyaman dari segi suhu, uap air (kelembaban), dan velositas (gerak udara dan pola-pola distribusi). Kebersihan udara dan hilangnya bau (melalui ventilasi) merupakan kondisi-kondisi kenyamanan tambahan yang harus dikendalikan oleh sistem penghawaan buatan.

Agar memberi kondisi yang nyaman secara terus-menerus dalam suatu bangunan, sistem-sistem penghawaan harus mempertahankan keseimbangan antara kondisi-kondisi termal dan atmosfer dalam dan kondisi-kondisi iklim yang terus-menerus berubah di luar ruangan dan di dalam ruangan itu sendiri. Jika suasana panas sistem harus memberi cukup udara sejuk untuk mengatasi panas yang diperoleh dari luar. Dalam keadaan dingin ia harus memberi cukup panas untuk menggantikan panas yang hilang ke luar.

Agar didapatkan suatu sistim serta kapasitas pendingin yang tepat, maka perlu diketahui besarnya beban kalor pada ruang (karena fungsi AC adalah untuk menghapus beban kalor tersebut) sehingga suhu dan kelembaban udara tetap nyaman. Besar beban kalor yang terjadi ditentukan oleh: hantaran panas radiasi matahari, hantaran panas secara transmisi, hantaran panas ventilasi atau inviltrasi, beban panas intern (manusia dan peralatan elektronik atau mesin).

Dengan memperhatikan hal di atas, maka di dalam desain ruang atau bangunan yang menggunakan penghawaan buatan, harus mengikutkan pertimbangan-pertimbangan berikut:

-Bentuk cenderung beraturan agar memudahkan dalam perencanan sistem penghawaannya.

-Bentuknya diusahakan disejajarkan dengan arah aliran angin

-Langit-langit atau plafon dibuat relatif rendah kecuali untuk pertimbangan lain, seperti akustik dan lain-lain.

1.1.1. Prinsip Cara Kerja Air Conditioner

Sistem dan mekanisme AC banyak dikembangkan oleh para ahli, dan setiap perusahaan produsennya menawarkan berbagai keunggulan dalam setiap sistem yang dipakai. Keunggulan yang ditawarkan biasanya dalam hal pengoperasian dan energi yang digunakan baik sistem yang di luar ruangan (outdoor) juga sistem di dalam ruang (indoor). Secara garis besar prinsip kerja air conditioner adalah sebagai berikut:

1. Udara di dalam ruangan dihisap oleh kipas sentrifugal yang ada dalam evaporator dan udara bersentuhan dengan pipa coil yang berisi cairan refrigerant. Dalam hal ini refrigerant akan menyerap panas udara sehingga udara menjadi dingin dan refrigerant akan menguap dan dikumpulkan dalam penampung uap.

2. Tekanan uap yang berasal dari evaporator disirkulasikan menuju kondensor, selama proses kompresi berlangsung, temperatur dan tekanan uap refrigerant menjadi naik dan ditekan masuk ke dalam kondensor.

3. Untuk menurunkan tekanan cairan refrigerant yang bertekanan tinggi digunakan katup ekspansi untuk mengatur laju aliran refrigerant yang masuk dalam evaporator.

4. Pada saat udara keluar dari condensor udara menjadi panas. Uap refrigerant memberikan panas kepada udara pendingin dalam condensor menjadi embun pada pipa kapiler. Dalam mengeluarkan panas pada condensor, dibantu oleh kipas propeller.

5. Pada sirkulasi udara dingin terus-menerus dalam ruangan, maka perlu adanya thermostat untuk mengatur suhu dalam ruangan atau sesuai dengan keinginan.

suhu


SUHU

Pengertian suhu

Suhu adalah besaran yang menyatakan derajat panas dingin suatu benda dan alat yang digunakan untuk mengukur suhu adalah thermometer. Dalam kehidupan sehari-hari masyarakat untuk mengukur suhu cenderung menggunakan indera peraba. Tetapi dengan adanya perkembangan teknologi maka diciptakanlah termometer untuk mengukur suhu dengan valid.

Pada abad 17 terdapat 30 jenis skala yang membuat para ilmuan kebingungan. Hal ini memberikan inspirasi pada Anders Celcius (1701 – 1744) sehingga pada tahun 1742 dia memperkenalkan skala yang digunakan sebagai pedoman pengukuran suhu. Skala ini diberinama sesuai dengan namanya yaitu Skala Celcius. Apabila benda didinginkan terus maka suhunya akan semakin dingin dan partikelnya akan berhenti bergerak, kondisi ini disebut kondisi nol mutlak. Skala Celcius tidak bisa menjawab masalah ini maka Lord Kelvin (1842 – 1907) menawarkan skala baru yang diberi nama Kelvin. Skala kelvin dimulai dari 273 K ketika air membeku dan 373 K ketika air mendidih. Sehingga nol mutlak sama dengan 0 K atau -273°C. Selain skala tersebut ada juga skala Reamur dan Fahrenheit. Untuk skala Reamur air membeku pada suhu 0°R dan mendidih pada suhu 80°R sedangkan pada skala Fahrenheit air membuka pada suhu 32°F dan mendidih pada suhu 212°F.

Berikut ini perbandingan skala dari termometer diatas

Yang menjadi masalah dalam bab suhu adalah kebanyakan orang kesulitan untuk mengubah dari satu skala ke skala yang lainnya. Berikut ini adalah contoh mengubah dari skala celcius ke skala fahrenheit

Untuk skala yang lain caranya sama dengan contoh diatas. Thermometer menurut isinya dibagi menjadi : termometer cair, termometer padat, termometer digital. Semua termometer ini mempunyai keunggulan dan kelemahan masing-masing. Sedangkan berdasarkan penggunaannya termometer bermacam-macam sebagai misal termometer klinis, termometer lab dan lain-lain.

Berikut ini pembahasan macam macam termometer.

Pembuatan termometer pertama kali dipelopori oleh Galileo Galilei (1564 – 1642) pada tahun 1595. Alat tersebut disebut dengan termoskop yang berupa labu kosong yang dilengkapi pipa panjang dengan ujung pipa terbuka. Mula-mula dipanaskan sehingga udara dalam labu mengembang. Ujung pipa yang terbuka kemudian dicelupkan kedalam cairan berwarna. Ketika udara dalam tabu menyusut, zat cair masuk kedalam pipa tetapi tidak sampai labu. Beginilah cara kerja termoskop. Untuk suhu yang berbeda, tinggi kolom zat cair di dalam pipa juga berbeda. Tinggi kolom ini digunakan untuk menentukan suhu. Prinsip kerja termometer buatan Galileo berdasarkan pada perubahan volume gas dalam labu. Tetapi dimasa ini termometer yang sering digunakan terbuat dari bahan cair misalnya raksa dan alkhohol. Prinsip yang digunakan adalah pemuaian zat cair ketika terjadi peningkatan suhu benda.

Raksa digunakan sebagai pengisi termometer karena raksa mempunyai keunggulan :

  1. raksa penghantar panas yang baik
  2. pemuaiannya teratur
  3. titik didihnya tinggi
  4. warnanya mengkilap
  5. tidak membasahi dinding

Sedangkan keunggulan alkhohol adalah :

  1. titik bekunya rendah
  2. harganya murah
  3. pemuaiannya 6 kali lebih besar dari pada raksa sehingga pengukuran mudah diamati

Termometer Laboratorium

Termometer ini menggunakan cairan raksa atau alkhohol. Jika cairan bertambah panas maka raksa atau alkhohol akan memuai sehingga skala nya bertambah. Agar termometer sensitif terhadap suhu maka ukuran pipa harus dibuat kecil (pipa kapiler) dan agar peka terhadap perubahan suhu maka dinding termometer (reservoir) dibuat setipis mungkin dan bila memungkinkan dibuat dari bahan yang konduktor.

Termometer Klinis

Termometer ini khusus digunakan untuk mendiaknosa penyakit dan bisanya diisi dengan raksa atau alkhohol. Termometer ini mempunyai lekukan sempit diatas wadahnya yang berfungsi untuk menjaga supaya suhu yang ditunjukkan setelah pengukuran tidak berubah setelah termometer diangkat dari badan pasien. Skala pada termometer ini antara 35°C sampai 42°C.

Termometer Ruangan

Termometer ini berfungsi untuk mengukur suhu pada sebuah ruangan. Pada dasarnya termometer ini sama dengan termometer yang lain hanya saja skalanya yang berbeda. Skala termometer ini antara -50°C sampai 50°C

Termometer Digital

Karena perkembangan teknologi maka diciptakanlah termometer digital yang prinsip kerjanya sama dengan termometer yang lainnya yaitu pemuaian. Pada termometer digital menggunakan logam sebagai sensor suhunya yang kemudian memuai dan pemuaiannya ini diterjemahkan oleh rangkaian elektronik dan ditampilkan dalam bentuk angka yang langsung bisa dibaca.

Termokopel

Merupakan termometer yang menggunakan bahan bimetal sebagai alat pokoknya. Ketika terkena panas maka bimetal akan bengkok ke arah yang koefesiennya lebih kecil. Pemuaian ini kemudian dihubungkan dengan jarum dan menunjukkan angka tertentu. Angka yang ditunjukkan jarum ini menunjukkan suhu benda