Senin, 18 Mei 2009

PSIKOMETRI TEKNIK PENDINGIN

PENGKONDISIAN UDARA

Tujuan Instruksional Khusus

Mmahasiswa mampu melakukan perhitungan dan analisis pengkondisian udara. Cakupan dari pokok bahasan ini adalah prinsip pengkondisian udara, penggunaan diagram psikrometri, penghitungan beban pendinginan sensibel dan laten.

1. Prinsip Dasar Pengkondisian Udara

Untuk mencapai kenyamanan, kesehatan dan kesegaran hidup dalam rumah tinggal atau bangunan – bangunan bertingkat, khususnya di daerah beriklim tropis dengan udara yang panas dan tingkat kelembaban tinggi, diperlukan usaha untuk mendapatkan udara segar baik udara segar dari alam dan aliran udaran buatan. Udara yang nyaman mempunyai kecepatan tidak boleh lebih dari 5 km/jam dengan suhu/ temperatur kurang dari 30°C dan banyak mengandung O2.

Daerah di Indonesia kebanyakan kurang memberikan kenyamanan karena udaranya panas (23 -34°C), kotor (berdebu, berasap) dan angin tidak menentu, khususnya pada bangunan tinggi dimana angin mempunyai kecepatan tinggi. Karena keadaan alam yang demikian, maka diperlukan suatu cara untuk mendapatkan kenyamanan dengan menggunakan alat penyegaran udara (air condition).

Pengkondisian udara adalah perlakuan terhadap udara untuk mengatur suhu, kelembaban, kebersihan dan pendistribusiannya secara serentak guna mencapai kondisi nyaman yang diperlukan oleh orang yang berada di dalam suatu ruangan. Atau dapat didefinisikan suatu proses mendinginkan udara sehingga mencapai temperatur dan kelembaban yang ideal. Sistem pengkondisian udara pada umumnya dibagi menjadi 2 golongan utama :

  • Pengkondisian udara untuk kenyamanan kerja

  • Pengkondisian udara untuk industri

Sistem pengkondisian udara untuk industri dirancang untuk memperoleh suhu, kelembaban dan distribusi udara yang sesuai dengan yang dipersyaratkan oleh proses serta peralatan yang dipergunakan di dalam ruangan. Dengan adanya pengkondisian udara ini, diharapkan udara menjadi segar sehingga karyawan dapat bekerja dengan baik, pasien di rumah sakit menjadi lebih nyaman dan penghuni rumah tinggal menjadi nyaman

1.b. Komposisi utama sistem pengkondisian udara


Gambar 9.1. Sistem pengkondisian udara

Gambar 9.1. memperlihatkan komponen utama dari skema sistem pengkondisian.

Komponen sistem pengkondisian udara adalah:

  1. sistem pembangkit kalor, mesin refrigerasi, menara pendingin dan ketel uap
  2. sistem pipa: pipa air dan pipa refrigerasi dan pompa
  3. pengkondisian udara: saringan udara, pendingin udara, pemanas udara dan pelembab udara
  4. sistem saluran udara: kipas dan saluran udara

Komponen AC yang dilalui sirkkulasi udara

  • Fan (kipas udara) menggerakkan udara dari atau ke dalam ruangan. Udara yang dialirkan fan dapat berupa udara luar, udara ruangan atau gabungan dari udara luar dan udara ruangan. Jumlah aliran udara dan kecepatan udara harus diatur, agar memperoleh sirkulasi udara yang baik
  • Supply Duct (saluran udara keluar): untuk saluran udara dingin dari fan ke dalam ruangan
  • Supply out let (lubang keluar): untuk megatur arah aliran udara dari fan, sehingga udara terdistribusi ke seluruh ruangan. Untuk kenyamanan, jumlah out let turut menentukan
  • Ruangan yang didinginkan: ruangan harus tertutup, sehingga udara dingin dalam ruangan tidak terbuang keluar dan udara luar tidak masuk ke dalam ruangan.


Gambar 9.2 Diagram sistem pengkondisian udara

Prinsip pengkondisian udara adalah kondisi udara dalam ruangan dapat dalam keadaan sangat dingin, panas, lembab, kering, kecepatan udara tinggi atau tidak ada gerakan udara. Udara dingin digerakkan oleh Fan masuk reducting (saluran udara) dan melalui out let (lubang keluar) udara masuk ke dalam ruangan. Udara dari dalam ruangan kembali ke return out let (grile/ lubang isap) masuk ke ducting return (saluran kembali) dan melalui filter untuk pembersihan udara masuk melewati celah-celah/ permukaan coil evaporator (koil pendinginan) dan kembali digerakkan Fan (kipas udara).

2. Psikrometrik untuk Proses Air Conditioning

Psikometrik adalah ilmu yang mempelajari sifat-sifat termodinamika dari udara basah. Secara umum digunakan untuk mengilustrasikan dan menganalisis perubahan sifat termal dan karakteristik dari proses dan siklus sistem penyegaran udara (air conditioning). Diagram psikometrik adalah gambaran dari sifat-sifat termodinamika dari udara basah dan variasi proses sistem penyegaran udara dan siklus sistem penyegaran udara. Dari diagram psikometrik akan membantu dalam perhitungan dan menganalis kerja dan perpindahan energi dari proses dan siklus sistem penyegaran udara. Diagram psikrometrik ditunjukkan pada Gambar 9.3.


Gambar 9-3 Kurva Psikrometri

Proses yang terjadi pada udara dapat diganbarkan dalam bagan psikrometrik guna menjelaskan perubahan sifat-sifat udara yang penting seperti suhu, asio kelembaban dan entalpi dalm proses-proses tersebut. Beberapa proses dasar dapat ditunjukkan sebagai berikut

a. Proses Pemanasan dan pendinginan

Proses pemanasan dan pendinginan diartikan sebagai laju perpindahan kalor yang hanya disebabkan oleh perubahan suhu bola kering. Gambar 9.4. menunjukkan suatu perubahan suhu bola kering tanpa ada perubahan rasio kelembaban.


Gambar 9.4. Pemanasan dan pendinginan sensibel

b. Pelembaban adiabatik dan non adiabatik

Gambar 9.5. menunjukkan proses pelembaban yang dapat bersifat adiabatik (proses 1-2) atau dengan penambahan kalor (proses 1-3).


Gambar 9.5. Proses pelembaban udara

c. Pendinginan dan pengurangan kelembaban

Proses ini menurunkan suhu bola kering dan rasio kelembaban (Gambar 9.6). Proses ini terjadi pada koil pendingin atau alat penurun kelembaban.


Gambar 9.6. Pendinginan dan penurunan kelembaban

d. Pengurangan kelembaban kimiawi

Pada proses kimiawi (Gambar 9.7), uap air dari udara diserap atau diadsorbsi oleh suatu bahan higroskopik. Jika proses tersebut diberi penyekat kalor, sehingga entalpinya tetap, dan karena kelembabannya turun maka suhu udara tersebut harus naik.


Gambar 9.7. Proses penurunan kelembaban kimiawi

e. Pencampuran Udara

Campuran dua aliran udara adalah proses yang umum di dalam pengkondisian udara. Gambar 9.8 menunjukkan pencampuran udara antara w1 kg/detik udara dari keadaan 1 dengan w2 kg/detik udara dari keadaan 2. Hasilnya adalah kondisi 3, terlihat pada grafik psikrometrik dalam Gambar 9.9.


Gambar 9.8. Skema pencampuran udara


Gambar 9.9. Proses pencampuran udara pada kurva psikrometrik

Persamaan dasar untuk proses pencampuran ini adalah persamaan kesetimbangan energi dan keseimbangan massa. Persamaan keseimbangan energi adalah:

.........................................................................................

9-1


Dan persamaan kestimbangan massa air adalah:

.........................................................................................

9-2


Persamaan 9.1 dan 9.2 menunjukkan bahwa entalpi dan rasio kelembaban akhir adalah rata-rata dari entalpi dan rasio kelembaban udara saat masuk. Suatu pendekatan yang dilakukan oleh para ahli adalah bahwa suhu dan rasio kelembaban merupakan harga rata-rata udara masuk. Dengan pendekatan ini, titik yang terdapat pada grafik psikrometrik di atas menyatakan hasil dari suatu proses pencampuran yang terletak pada garis lurus yang menghubungkan titik-titik dari kondisi-kondisi pemasukan. Selanjutnya perbandingan jarak pada garis 1-3 dan 2-3 sama dengan perbandingan laju aliran w2 dan w1.

3. Perhitungan Beban Pendinginan

Tujuan utama sistem pengkondisian udara adalah mempertahankan keadaan udara didalam ruangan dan meliputi pengaturan temperatur, kelembaban relatif, kecepatan sirkulasi udara maupun kualitas udara. Sistem pengkondisian udara yang dipasang harus mempunyai kapasitas pendinginan yang tepat dan dapat dikendalikan sepanjang tahun. Kapasitas peralatan yang dapat diperhitungkan berdasarkan beban pendinginan setiap saat yang sebenarnya. Alat pengatur ditentukan berdasarkan kondisi yang diinginkan untuk mempertahankan selama beban puncak maupun sebagian. Beban puncak maupun sebagian tidak mungkin dapat diukur sehingga diperlukan prediksi melalui perhitungan yang mendekati keadaan yang sebenarnya.

Untuk maksud perkiraan tersebut diperlukan survei secara mendalam agar dapat dilakukan analisis yang teliti terhadap sumber-sumber beban pendinginan. Pemilihan peralatan yang ekonomis dan perancangan sistem yang tepat dapat dilakukan juga beban pendinginan sesaat yang sebenarnya dapat dihitung secara teliti.

Beban pendinginan sebenarnya adalah jumlah panas yang dipindahkan oleh sistem pengkondisian udara setiap hari. Beban pendinginan terdiri atas panas yang berasal dari ruang dan tambahan panas. Tambahan panas adalah jumlah panas setiap saat yang masuk kedalam ruang melalui kaca secara radiasi maupun melalui dinding akibat perbedaan temperatur. Pengaruh penyimpanan energi pada struktur bangunan perlu dipertimbangkan dalam perhitungan tambahan panas.

Perhitungan beban pendingin dapat diperoleh dari ASHRAE Handbook of Fundamentals. Tata cara perhitungan ini dapat menghasilkan sistem pengaturan udara yang terlalu besar yang mengakibatkan kurang efisien dalam pemakaian.
Dengan makin besarnya biaya-biaya pemakaian energi maka makin dirasa perlu mengadakan optimasi sistem pengaturan udara suatu gedung atau bangunan yang harus dihitung dari waktu kewaktu secara dinamis.


Gambar 9.10. Perhitungan beban pendinginan

Didalam kenyataannya kalor yang masuk kedalam gedung tidak tetap, karena faktor-faktor yang mempengaruhi kalor tersebut juga berubah-ubah. Sebagai contoh temperatur udara luar (lingkungan) nilainya merupakan fungsi waktu, yaitu maksimum disiang hari rendah dipagi dan sore hari, sedang minimumnya dimalam hari. Demikian pula kelengasan udara luar maupun radiasi surya yang mengenai dinding bangunan nilainya berubah terhadap waktu.

Untuk memperhitungkan pengaruh dari perubahan tersebut sangatlah sulit, bahkan mungkin tidak praktis untuk dihitung. Oleh karena itu untuk menentukan keadaan tak lunak (transien) akan dipilih faktor-faktor yang dominan. Disamping itu akan diperhatikan adanya absorbsi oleh struktur bangunan.

Dasar perhitungan beban pendinginan dilakukan dengan dua cara, yaitu:

  • perhitungan beban kalor puncak untuk menetapkan besarnya instalasi
  • perhitungan beban kalor sesaat, untuk mengetahui biaya operasi jangka pendek dan jangka panjang serta untuk mengetahui karakteristik dinamik dari instalasi yang bersangkutan.

Beban pendinginan merupakan jumlah panas yang dipindahkan oleh suatu sistem pengkondisian udara. Beban pendinginan terdiri dari panas yang berasal dari ruang pendingin dan tambahan panas dari bahan atau produk yang akan didinginkan. Tujuan perhitungan beban pendinginan adalah untuk menduga kapasitas mesin pendingin yang dibutuhkan untuk dapat mempertahankan keadaan optimal yang diinginkan dalam ruang.

Aspek-aspek fisik yang harus diperhatikan dalam perhitungan beban pendingin antara lain :
1. Orientasi gedung dengan mempertimbangkan pencahayaan dan pengaruh angin
2. Pengaruh emperan atau tirai jendela dan pantulan oleh tanah
3. Penggunaan ruang
4. Jumlah dan ukuran ruang
5. Beban dan ukuran semua bagian pembatas dinding
6. Jumlah dan aktivitas penghuni
7. Jumlah dan jenis lampu
8. Jumlah dan spesifikasi peralatan kerja
9. Udara infiltrasi dan ventilasi

Beban pendinginan suatu ruang berasal dari dua sumber, yaitu melalui sumber eksternal dan sumber internal.
a. Sumber panas eksternal antara lain :

  • Radiasi surya yang ditransmisikan melaui kaca
  • Radiasi surya yang mengenai dinding dan atap, dikonduksikan kedalam ruang dengan memperhitungkan efek penyimpangan melalui dinding
  • Panas Konduksi dan konveksi melalui pintu dan kaca jendela akibat perbedaan temperatur.
  • Panas karena infiltrasi oleh udara akibat pembukaan pintu dan melalui celah-celah jendela.
  • Panas karena ventilasi.


b. Sumber panas internal antara lain :

  • Panas karena penghuni
  • Panas karena lampu dan peralatan listrik
  • Panas yang ditimbulkan oleh peralatan lain

Beban pendinginan total merupakan jumlah beban pendinginan tiap ruang. Beban ruang tiap jam dipengaruhi oleh perubahan suhu udara luar, perubahan intensitas radiasi, surya dan efek penyimpanan panas pada struktur/dinding bagian luar bangunan gedung.

Dalam sistem pendingin dikenal dua macam panas atau kalor yaitu panas sensible (panas yang menyebabkan perubahan temperatur tanpa perubahan fase). Setiap sumber panas yang dapat menaikkan suhu ruangan ditandai dengan naiknya temperatur bola kering (Tdb) akan menambah beban panas sensible.

Panas laten yaitu : panas yang menyebabkan perubahan fase tanpa menyebabkan perubahan temperatur misalnya : kalor penguapan. Setiap sumber panas yang dapat menambah beban laten. Udara yang dimasukkan kedalam ruangan harus mempunyai kelembaban rendah agar dapat menyerap uap air (panas laten) dan temperatur yang rendah agar dapat menyerap panas dari berbagai sumber panas dalam ruangan (panas sensible), agar kondisi ruangan yang diinginkan dapat dipercepat.

Beban ini dapat diklasifikasikan sebagai berikut :

a. Penambahan beban sensible

  • Transmisi panas melalui bahan bangunan, melewati atap, dinding, kaca, partisi, langit-langit dan lantai
  • Radiasi sinar matahari
  • Panas dari penerangan atau lampu-lampu
  • Pancaran panas dari penghuni ruangan
  • Panas dari peralatan tambahan dari ruangan
  • Panas dari elektromotor

b. Penambahan panas laten

  • Panas dari penghuni ruangan
  • Panas dari peralatan ruangan

c. Ventilasi dan infiltrasi

  • Penambahan panas sensible akibat perbedaan temperatur udara dalam dan luar
  • Penambahan panas laten akibat kelembaban udara dalam dan luar

Beban pendinginan puncak (total heat load) adalah total panas yang harus diambil oleh suatu sistem pendingin. Secara umum terdiri dari

a. Panas konduksi (Q1)


Gambar 9.11. Skema perpindahan panas melalui dinding

Beban panas yang melalui dinding disebut sebagai beban kebocoran dinding, yaitu banyaknya panas yang bocor menembus dinding ruang dari bagian luar ke dalam. Karena tidak ada insulasi yang sempurna, maka akan selalu ada beban panas yang berasal dari luar ke dalam ruangan, karena suhu di dalam ruangan lebih rendah dari pada suhu di luar ruangan. Gambar 9.11. menunjukkan skema perpindahan panas melalui dinding..

Panas yang masuk melalui dinding dan atas:

.......................................................................................

9-3

dimana Q = jumlah panas (W)
U = koefisien perpindahan panas total (W/m2 K)
A = luas permukaan (m2)
 (to-ti) = perbedaan suhu dalam dan luar ruang pendingin (K)

koefisien perpindahan panas total (U) dihitung dengan persamaan:

..........................................

9-4


dimana x = tebal bahan insulasi (m)
k = konduktivitas termal bahan (W/m K)
h = koefisien perpindahan panas konveksi (W/m2 K)

b. Field heat (Q2)

Beban kalor yang dibawa oleh produk yang akan didinginkan atau disimpan:

.....................................................................................

9-5


dimana Q = jumlah panas (KJoule)
m = berat dari produk yang didinginkan (kg)
Cp= panas jenis dari produk di atas titik beku (KJoule/kg K)
ΔT= perubahan suhu produk (K)

c. Panas Respirasi (Q3)

Panas yang diperoleh dari produk sebagai akibat dari proses respirasi.

.......................................................

9-6

d. Beban lampu (Q4)

....................................................................................

9-7

e. Service load (Q5)

Service load adalah panas lain yang timbul dalam proses operasi pendinginan seperti kipas, operator, udara luar ketika pintu dibuka, motor listrik dan panas infiltrasi dari penyekat dan rak pendingin. Diperkirakan besarnya adalah sekitar 10% dari total konduksi panas, field heat dan panas respirasi.

Contoh soal:

1. Suatu campuran udara-uap bersuhu bola kering 30 °C dan rasio kelembaban 0.015. Hitunglah pada dua tekanan barometrik yang berbeda, 85 dan 101 kPa:

a. entalpi udara campuran
b. suhu pengembunanrasio

2. Dalam suatu unit pengkondisian udara, dimasukkan 3.5 m3/detik udara dengan suhu 27°C bola kering, kelembaban relatip 50 persen dan tekanan atmosfir standar. Udara keluar dengan keadaan suhu bola kering 13°C dan kelembaban relatif 90 persen. Dengan menggunakan sifat-sifat udara yang terdapat dalam kurva psikrometrik:

a. hitung kapasitas refrigerasi dengan satuan kilowatt
b. tentukan laju pemisahan air dan udara

3. Suatu aliran udara luar dicampur dengan aliran udara balik dalam suatu sistem pengkondisian udara yang bekerja pada tekanan 101 kPa. Laju aliran udara luar 2 kg/detik bersuhu bola kering 35°C dan suhu bola basah 25°C. Laju udara balik 3 kg/detik dengan suhu 24°C dan kelembaban relatif 50 persen. Tentukan:

a. entalpi udara campuran
b. rasio kelembaban udara campuran
c. suhu bola kering udara campuran yang ditentukan dari sifat-sifat yang ditunjukkan dalam bagian a dan b
d. suhu bola kering dengan mengukur suhu bola kering rata-rata arus masuk

4. Udara di dalam suatu ruangan bersuhu 30 oC dan RH 80%. Ukuran ruangan adalah 2 m x 3 m x 3 m. Dengan menggunakan diagram psikrometri tentukan:

  • Suhu bola basah ruangan.
  • Suhu titik embun ruangan.
  • Kelembaban mutlak ruangan.
  • Tekanan uap air di dalam ruangan.
  • Jumlah panas yang harus dipindahkan dari ruangan tersebut (hint. Tentukan volume jenis berdasarkan suhu rata-rata udara)

Test Formatip

1. Dapat dipahami apabila kelembaban mutlak di dalam ruang pendingin lebih rendah daripada kelembaban mutlak lingkungan. Akan tetapi, dapatkah anda jelaskan mengapa kelembaban relatif (RH) dalam ruang pendingin dapat mempunyai nilai yang lebih rendah daripada RH lingkungan? (Gunakan skema bagan psikrometrik)

2. Diketahui udara di titik 1 mempunyai kondisi suhu (bola kering): 35oC dengan RH: 60% sedangkan udara di titik 2 mempunyai kondisi kondisi suhu (bola kering): 22oC dengan RH: 90%. Dengan laju aliran masing-masing 2 kg/detik (dari titik 1) dan 3 kg/detik (dari titik 2) keduanya bercampur di titik 3. Hitunglah suhu (bola kering) dan RH di titik 3 dengan:


  • menggunakan diagram psikrometri, dan gambarkan sketsa pencampuran tersebut
  • menggunakan rumus pencampuran udara.

3. Bila udara dengan kondisi Tdb = 30oC dan RH=70% didinginkan sampai kondisi jenuh, dengan dua cara berikut:

  • Didinginkan pada kelembaban mutlak konstan
  • Didinginkan secara adiabatik

Berapa suhu udara setelah pendinginan pada (a) dan (b) ?

4. Jika udara yang bersuhu 30oC dengan RH 60%,

  • Didinginkan secara adiabatis sampai RH 90%, tentukan suhu udara bola kering, bola basah dan kelembaban mutlak dan perubahan entalpi
  • Didinginkan pada kelembaban mutlak yang konstan sampai kondisi RH 90%, tentukan suhu bola kering, suhu bola basah dan juga perubahan entalpi

5. Suhu udara yang masuk dalam suatu unit pendingin udara (AC) adalah 27°C bola kering, RH 50% dan debit 3.5m3/detik. Sedangkan udara yang keluar bersuhu 13°C dan RH 90%. Dengan menggunakan sifat-sifat udara yang terdapat dalam bagan psikrometrik, hitung:

  • kapasitas pendinginan (kilowatt)
  • laju pemisahan air dari udara (kg/detik)

6. Diketahui beban panas sensibel dan laten dalam ruang pendingin single zone secara berturut-turut adalah 60 dan 6 kW. Ruang tersebut dijaga dalam suhu 18oC dengan RH 50%. Kondisi udara lingkungan adalah suhu 30oC dengan RH =70%. Untuk keperluan ventilasi digunakan campuran udara lingkungan dengan udara resirkulasi dengan perbandingan 1:4. Tentukan kondisi udara sebelum melalui koil (evaporator) dan suhu udara setelah melalui koil.

7. Jika perolehan (beban) panas dalam suatu ruang yang menggunakan pengkondisian udara zone tunggal adalah sebagai berikut: panas sensibel 60 kW dan panas laten 5 kW. Kondisi udara yang diinginkan dari ruangan tersebut adalah 25oC dan RH 60%, sedangkan kondisi udara luar adalah 35oC dan RH 60%. Misalnya syarat ventilasi untuk ruangan tersebut adalah: udara luar : udara resirkulasi = 1 : 7. Tentukan: (a) suhu udara masuk koil pendingin dan (b) suhu udara meninggalkan koil pendingin.

SUHU RUANG nyaman pada manusia

PENDAHULUAN

Manusia membutuhkan lingkungan udara ruang yang nyaman (thermal comfort) untuk melakukan aktivitas secara optimal. Dengan adanya lingkungan udara yang nyaman ini manusia akan dapat beraktifitas dengan tenang dan sehat. Keadaan udara pada suatu ruang aktifitas sangat berpengaruh pada kondisi dan keadaan aktifitas itu. Bila dalam suatu ruangan yang panas dan pengap, manusia yang melakukan aktivitas di dalamnya tentu juga akan sangat terganggu dan tidak dapat melakukan aktifitasnya secara baik, dan ia merasa tidak kerasan.

Tubuh manusia seolah mesin panas yang terus-menerus menghasilkan panas. Kenyamanan termal langsung berhubungan dengan tubuh manusia yang selalu membuang panas yang berlebihan ini. Dalam keadaan-keadaan normal pemindahan panas ini terjadi antara tubuh dan udara disekitarnya. Namun demikian tubuh manusia memiliki pertahanan mekanisme alami yang terus-menerus bekerja untuk mempertahankan keseimbangan yang diperlukan antara timbulnya panas dan pembuangan panas yang dihasilkan. Mekanisme-mekanisme ini bekerja untuk mempertahankan suhu tubuh yang normal, dengan mengendalikan jumlah pembuangan panas tersebut. Bila laju kehilangan panas terlalu lambat, kita berkeringat. Keringat tersebut menambah laju kehilangan panas karena penguapan. Jika laju kehilangan panas terlalu cepat, kita mulai menggigil. Hal ini menyebabkan meningkatnya pembangkitan panas guna mengimbangi kehilangan panas.

Untuk mendapatkan kondisi ruangan yang memenuhi thermal comfort atau juga kondisi yang harus memenuhi persyaratan tertentu sesuai dengan yang kita inginkan, tanpa adanya ketergantungan dengan lingkungan luar, maka digunakan Penghawaan Buatan (Air Conditioning). Penghawaan buatan di sini memiliki pengertian bahwa udara dalam ruang dikondisikan berdasarkan beban kalor yang terjadi pada ruangan tersebut.

Salah satu jaringan distribusi penting dalam sebuah bangunan ialah sistem pengadaan udara yaitu sistem pemanasan/pendinginan, ventilasi, dan air conditioning (AC). Tujuan dari sistem pengendalian penghawaan ini adalah memberikan kondisi-kondisi suhu dan suasana yang nyaman, yang dicapai dengan mengolah dan mendistribusikan udara yang disejukan ke seluruh bangunan. Sebenarnya, pengolahan suhu hanya merupakan salah satu dari pengolahan pada udara sebelum disampaikan kepada para penghuni. Penyesuaian termal mengatur suhu, kelembaban, dan distribusi udara. Penyesuaian atmosfir mengatur kebersihan dan mengendalikan bau-bau.

Berbeda dengan jaringan-jaringan distribusi yang berlangsung di seluruh bangunan, sistem AC dan bagian-bagian komponennya menghendaki jumlah ruang yang cukup. Meskipun demikian pemahaman dan pengetahuan tentang implikasi-implikasi sistem AC untuk arsitektur sangat penting artinya untuk diperhatikan. Selain itu sistem ini pada dewasa ini mendapat perhatian khusus dalam penggunaannya dipandang dari sisi penghematan energi.

1.1. PENGERTIAN PENGHAWAAN BUATAN

Sebelum membahas tentang penghawaan buatan, kita perlu mengetahui bagaimana panas itu dapat menyebar atau berpindah. Ada empat cara pemindahan panas yakni:

a. Konduksi

Konduksi ialah pemindahan panas yang dihasilkan dari kontak langsung antara permukaan-permukaan. Konduksi terjadi hanya dengan menyentuh atau menghubungkan permukaan-permukaan yang panas atau sejuk.

b. Konveksi

Pemindahan panas berdasarkan gerakan cairan disebut konveksi. Dalam hal ini cairan adalah udara.

c. Evaporasi (penguapan)

Dalam pemindahan panas yang didasarkan pada evaporasi, sumber panas hanya dapat kehilangan panas. Misalnya panas yang dihasilkan oleh tubuh manusia, kelembaban dipermukaan kulit menguap ketika udara melintasi tubuh.

d. Radiasi.

Radiasi ialah pemindahan panas atas dasar gelombang-gelombang elektromagnetis. Misalnya tubuh manusia akan mendapat panas pancaran dari setiap permukaan dari suhu yang lebih tinggi dan ia akan kehilangan panas atau memancarkan panas kepada setiap obyek atau permukaan yang lebih sejuk dari tubuh manusia itu. Panas pancaran yang diperoleh atau hilang, tidak dipengaruhi oleh gerakan udara, juga tidak oleh suhu udara antara permukaan-permukaan atau obyek-obyek yang memancar.

Jumlah keseluruhan panas pindahan yang dihasilkan oleh masing-masing cara hampir seluruhnya ditentukan oleh kondisi-kondisi lingkungan. Umpamanya, udara yang jenuh tak dapat menerima kelembaban tubuh; jadi pemindahan panas tak dapat terjadi melalui penguapan. Pengondisian suatu ruang seharusnya meningkatkan laju kehilangan panas bila para penghuni terlalu panas dan mengurangi laju kehilangan panas bila mereka terlalu dingin. Tujuan ini tercapai dengan mengolah dan menyampaikan udara yang nyaman dari segi suhu, uap air (kelembaban), dan velositas (gerak udara dan pola-pola distribusi). Kebersihan udara dan hilangnya bau (melalui ventilasi) merupakan kondisi-kondisi kenyamanan tambahan yang harus dikendalikan oleh sistem penghawaan buatan.

Agar memberi kondisi yang nyaman secara terus-menerus dalam suatu bangunan, sistem-sistem penghawaan harus mempertahankan keseimbangan antara kondisi-kondisi termal dan atmosfer dalam dan kondisi-kondisi iklim yang terus-menerus berubah di luar ruangan dan di dalam ruangan itu sendiri. Jika suasana panas sistem harus memberi cukup udara sejuk untuk mengatasi panas yang diperoleh dari luar. Dalam keadaan dingin ia harus memberi cukup panas untuk menggantikan panas yang hilang ke luar.

Agar didapatkan suatu sistim serta kapasitas pendingin yang tepat, maka perlu diketahui besarnya beban kalor pada ruang (karena fungsi AC adalah untuk menghapus beban kalor tersebut) sehingga suhu dan kelembaban udara tetap nyaman. Besar beban kalor yang terjadi ditentukan oleh: hantaran panas radiasi matahari, hantaran panas secara transmisi, hantaran panas ventilasi atau inviltrasi, beban panas intern (manusia dan peralatan elektronik atau mesin).

Dengan memperhatikan hal di atas, maka di dalam desain ruang atau bangunan yang menggunakan penghawaan buatan, harus mengikutkan pertimbangan-pertimbangan berikut:

-Bentuk cenderung beraturan agar memudahkan dalam perencanan sistem penghawaannya.

-Bentuknya diusahakan disejajarkan dengan arah aliran angin

-Langit-langit atau plafon dibuat relatif rendah kecuali untuk pertimbangan lain, seperti akustik dan lain-lain.

1.1.1. Prinsip Cara Kerja Air Conditioner

Sistem dan mekanisme AC banyak dikembangkan oleh para ahli, dan setiap perusahaan produsennya menawarkan berbagai keunggulan dalam setiap sistem yang dipakai. Keunggulan yang ditawarkan biasanya dalam hal pengoperasian dan energi yang digunakan baik sistem yang di luar ruangan (outdoor) juga sistem di dalam ruang (indoor). Secara garis besar prinsip kerja air conditioner adalah sebagai berikut:

1. Udara di dalam ruangan dihisap oleh kipas sentrifugal yang ada dalam evaporator dan udara bersentuhan dengan pipa coil yang berisi cairan refrigerant. Dalam hal ini refrigerant akan menyerap panas udara sehingga udara menjadi dingin dan refrigerant akan menguap dan dikumpulkan dalam penampung uap.

2. Tekanan uap yang berasal dari evaporator disirkulasikan menuju kondensor, selama proses kompresi berlangsung, temperatur dan tekanan uap refrigerant menjadi naik dan ditekan masuk ke dalam kondensor.

3. Untuk menurunkan tekanan cairan refrigerant yang bertekanan tinggi digunakan katup ekspansi untuk mengatur laju aliran refrigerant yang masuk dalam evaporator.

4. Pada saat udara keluar dari condensor udara menjadi panas. Uap refrigerant memberikan panas kepada udara pendingin dalam condensor menjadi embun pada pipa kapiler. Dalam mengeluarkan panas pada condensor, dibantu oleh kipas propeller.

5. Pada sirkulasi udara dingin terus-menerus dalam ruangan, maka perlu adanya thermostat untuk mengatur suhu dalam ruangan atau sesuai dengan keinginan.

suhu


SUHU

Pengertian suhu

Suhu adalah besaran yang menyatakan derajat panas dingin suatu benda dan alat yang digunakan untuk mengukur suhu adalah thermometer. Dalam kehidupan sehari-hari masyarakat untuk mengukur suhu cenderung menggunakan indera peraba. Tetapi dengan adanya perkembangan teknologi maka diciptakanlah termometer untuk mengukur suhu dengan valid.

Pada abad 17 terdapat 30 jenis skala yang membuat para ilmuan kebingungan. Hal ini memberikan inspirasi pada Anders Celcius (1701 – 1744) sehingga pada tahun 1742 dia memperkenalkan skala yang digunakan sebagai pedoman pengukuran suhu. Skala ini diberinama sesuai dengan namanya yaitu Skala Celcius. Apabila benda didinginkan terus maka suhunya akan semakin dingin dan partikelnya akan berhenti bergerak, kondisi ini disebut kondisi nol mutlak. Skala Celcius tidak bisa menjawab masalah ini maka Lord Kelvin (1842 – 1907) menawarkan skala baru yang diberi nama Kelvin. Skala kelvin dimulai dari 273 K ketika air membeku dan 373 K ketika air mendidih. Sehingga nol mutlak sama dengan 0 K atau -273°C. Selain skala tersebut ada juga skala Reamur dan Fahrenheit. Untuk skala Reamur air membeku pada suhu 0°R dan mendidih pada suhu 80°R sedangkan pada skala Fahrenheit air membuka pada suhu 32°F dan mendidih pada suhu 212°F.

Berikut ini perbandingan skala dari termometer diatas

Yang menjadi masalah dalam bab suhu adalah kebanyakan orang kesulitan untuk mengubah dari satu skala ke skala yang lainnya. Berikut ini adalah contoh mengubah dari skala celcius ke skala fahrenheit

Untuk skala yang lain caranya sama dengan contoh diatas. Thermometer menurut isinya dibagi menjadi : termometer cair, termometer padat, termometer digital. Semua termometer ini mempunyai keunggulan dan kelemahan masing-masing. Sedangkan berdasarkan penggunaannya termometer bermacam-macam sebagai misal termometer klinis, termometer lab dan lain-lain.

Berikut ini pembahasan macam macam termometer.

Pembuatan termometer pertama kali dipelopori oleh Galileo Galilei (1564 – 1642) pada tahun 1595. Alat tersebut disebut dengan termoskop yang berupa labu kosong yang dilengkapi pipa panjang dengan ujung pipa terbuka. Mula-mula dipanaskan sehingga udara dalam labu mengembang. Ujung pipa yang terbuka kemudian dicelupkan kedalam cairan berwarna. Ketika udara dalam tabu menyusut, zat cair masuk kedalam pipa tetapi tidak sampai labu. Beginilah cara kerja termoskop. Untuk suhu yang berbeda, tinggi kolom zat cair di dalam pipa juga berbeda. Tinggi kolom ini digunakan untuk menentukan suhu. Prinsip kerja termometer buatan Galileo berdasarkan pada perubahan volume gas dalam labu. Tetapi dimasa ini termometer yang sering digunakan terbuat dari bahan cair misalnya raksa dan alkhohol. Prinsip yang digunakan adalah pemuaian zat cair ketika terjadi peningkatan suhu benda.

Raksa digunakan sebagai pengisi termometer karena raksa mempunyai keunggulan :

  1. raksa penghantar panas yang baik
  2. pemuaiannya teratur
  3. titik didihnya tinggi
  4. warnanya mengkilap
  5. tidak membasahi dinding

Sedangkan keunggulan alkhohol adalah :

  1. titik bekunya rendah
  2. harganya murah
  3. pemuaiannya 6 kali lebih besar dari pada raksa sehingga pengukuran mudah diamati

Termometer Laboratorium

Termometer ini menggunakan cairan raksa atau alkhohol. Jika cairan bertambah panas maka raksa atau alkhohol akan memuai sehingga skala nya bertambah. Agar termometer sensitif terhadap suhu maka ukuran pipa harus dibuat kecil (pipa kapiler) dan agar peka terhadap perubahan suhu maka dinding termometer (reservoir) dibuat setipis mungkin dan bila memungkinkan dibuat dari bahan yang konduktor.

Termometer Klinis

Termometer ini khusus digunakan untuk mendiaknosa penyakit dan bisanya diisi dengan raksa atau alkhohol. Termometer ini mempunyai lekukan sempit diatas wadahnya yang berfungsi untuk menjaga supaya suhu yang ditunjukkan setelah pengukuran tidak berubah setelah termometer diangkat dari badan pasien. Skala pada termometer ini antara 35°C sampai 42°C.

Termometer Ruangan

Termometer ini berfungsi untuk mengukur suhu pada sebuah ruangan. Pada dasarnya termometer ini sama dengan termometer yang lain hanya saja skalanya yang berbeda. Skala termometer ini antara -50°C sampai 50°C

Termometer Digital

Karena perkembangan teknologi maka diciptakanlah termometer digital yang prinsip kerjanya sama dengan termometer yang lainnya yaitu pemuaian. Pada termometer digital menggunakan logam sebagai sensor suhunya yang kemudian memuai dan pemuaiannya ini diterjemahkan oleh rangkaian elektronik dan ditampilkan dalam bentuk angka yang langsung bisa dibaca.

Termokopel

Merupakan termometer yang menggunakan bahan bimetal sebagai alat pokoknya. Ketika terkena panas maka bimetal akan bengkok ke arah yang koefesiennya lebih kecil. Pemuaian ini kemudian dihubungkan dengan jarum dan menunjukkan angka tertentu. Angka yang ditunjukkan jarum ini menunjukkan suhu benda

Senin, 06 April 2009

Sistem Air Conditioner (AC) terdiri dari komponen-komponen yang bekerja berdasarkan siklus pendinginan, yaitu :

1. Kompresor

adalah alat untuk memampatkan gas refrigerant (pendingin) yang masuk supaya dapat mencair di Kondensor.
1. Kondensor

Bekerja melepaskan panas yang diambil refrigerant di evaporator dan mencairkannya.

1. Katup ekspansi/flow control

Katup ekspansi yang berdiameter kecil, berfungsi menurunkan tekanan aliran, dan dengan turunnya tekanan memungkinkan refrigerant untuk menguap.

1. Evaporator

adalah media penguapan bagi cairan refrigerant dan selama menguap refrigerant menyerap panas dari udara disekitarnya.

KONDENSOR

Secara umum kompresor ada 2 jenis.

1. Kompresor model torak : terdiri dari beberapa bentuk gerak torak
* Tegak lurus
* Memanjang
* Aksial
* Radial
* Menyudut (model V)

Kerugian kompresor model torak :

· Momen putar yang dibutuhkan tidak merata, maka kejutan/getaran lebih besar

· Bentuk dan konstruksi lebih besar dan memakan tempat

Keuntungan kompresor model torak:

· Dapat dipakai untuk segala macam jenis AC

· Konstruksi lebih tahan lama

1. Kompresor model rotary

Gerakan rotor di dalam stator kompresor akan menghisap dan menekan zat pendingin.

Keuntungan kompresor rotary

· Karena setiap putaran menghasilkan langkah – langkah hisap dan tekan secara bersamaan, maka momen putar lebih merata akibatnya getaran / kejutan menjadi lebih kecil

· Ukuran dimensinya dapat dibuat lebih kecil & menghemat tempat.

Kerugian kompresor rotary

· Sampai saat ini hanya dipakai untuk sistem AC yang kecil saja sebab pada volume yang besar, rumah dan rotornya harus besar pula dan kipas pada rotor tidak cukup kuat menahan gesekan.

Kompresor merupakan jantung dari sistem refrigerasi. Pada saat yang sama komrpesor menghisap uap refrigeran yang bertekanan rendah dari evaporator dan mengkompresinya menjadi uap bertekanan tinggi sehingga uap akan tersirkulasi. Kebanyakan kompresor-kompresor yang dipakai saat ini adalah dari jenis torak. Ketika torak bergerak turun dalam silinder, katup hisap terbuka dan uap refrigerant masuk dari saluran hisap ke dalam silinder. Pada saat torak bergerak ke atas, tekanan uap di dalam silinder meningkat dan katup hisap menutup, sedangkan katup tekan akan terbuka, sehingga uap refrigean akan ke luar dari silinder melalui saluran tekan menuju ke kondensor.

Beberapa masalah pada kompresor adalah bocornya katup terbakarnya motor kompresor. Jika katup tekan bocor ketika torak menghisap uap dari saluran hisap, sebagian uap yang masih tertinggal disaluran tekan akan terhisap kembali ke dalam silinder, sehingga mengakibatkan efisiensinya berkurang. Hal yang sama juga dapat terjadi bila katup hisap bocor ketika torak menekan uap ke saluran tekan, sebagian uap di alam silinder akan tertekan kembali ke saluran hisap. Untuk mencegah kebocoran torak terhadap dinding silinder, biasanya dipasang cincin torak. Jika cincin ini aus atau pecah, refrigeran dapat bocor sehingga “tekanan tekan” akan lebih rendah dan menyebabkan kekurangan efisiensi. Jika motor kompresor terbakar, terutama untuk jenis hermetik dan semi hermetik, dan jika rifrigeran yang dipakai adalah CFC dan HCFC, maka akan timbul asam yang bersifat korosif.

KONDENSOR

Kondensor juga merupakan salah satu komponen utama dari sebuah mesin pendingin. Pada kondensor terjadi perubahan wujud refrigeran dari uap super-heated (panas lanjut) bertekanan tinggi ke cairan sub-cooled (dingin lanjut) bertekanan tinggi. Agar terjadi perubahan wujud refrigeran (dalam hal ini adalah pengembunan / condensing), maka kalor harus dibuang dari uap refrigeran.

Kalor/panas yang akan dibuang dari refrigeran tersebut berasal dari :

1. Panas yang diserap dari evaporator, yaitu dari ruang yang didinginkan
2. Panas yang ditimbulkan oleh kompresor selama bekerja

Maka, fungsi kondensor adalah untuk merubah refrigeran gas menjadi cair dengan jalan membuang kalor yang dikandung refrigeran tersebut ke udara sekitarnya atau air sebagai medium pendingin/condensing.

Gas dalam kompresor yang bertekanan rendah dimampatkan/dikompresikan menjadi uap bertekanan tinggi sedemikian rupa, sehingga temperatur jenuh pengembunan (condensing saturation temperature) lebih tinggi dari temperature medium pengemburan (condensing medium temperature). Akibatnya kalor dari uap bertekanan tinggi akan mengalir ke medium pengembunan, sehingga uap refrigean akan terkondensasi.

KATUP EKSPANSI / FLOW CONTROL

Setelah refrigeran terkondensasi di kondensor, refrigeran cair tersebut masuk ke katup ekspansi yang mengontrol jumlah refrigeran yang masuk ke evaporator.

Ada banyak jenis katup ekspansi, tiga diantaranya adalah pipa kapiler, katup ekspansi otomatis, dan katup ekspansi termostatik.

1. Pipa Kapiler (capillary tube)

Katup ekspansi yang umum digunakan untuk sistem refrigerasi rumah tangga adalah pipa kapiler. Pipa kapiler adalah pipa tembaga dengan diameter lubang kecil dan panjang tertentu. Besarnya tekanan pipa kapiler bergantung pada ukuran diameter lubang dan panjang pipa kapiler. Pipa kapiler diantara kondensor dan evaporator

Refrigeran yang melalui pipa kapiler akan mulai menguap. Selanjutnya berlangsung proses penguapan yang sesungguhnya di evaporator. Jika refrigeran mengandung uap air, maka uap air akan membeku dan menyumbat pipa kapiler. Agar kotoran tidak menyumbat pipa kapiler, maka pada saluran masuk pipa kapiler dipasang saringan yang disebut strainer.

Ukuran diameter dan panjang pipa kapiler dibuat sedemikian rupa, sehingga refrigeran cair harus menguap pada akhir evaporator. Jumlah refrigeran yang berada dalam sistem juga menentukan sejauh mana refrigeran di dalam evaporator berhenti menguap, sehingga pengisian refrigeran harus cukup agar dapat menguap sampai ujung evaporator. Bila pengisian kurang, maka akan terjadi pembekuan pada sebagian evaporator. Bila pengisian berlebih, maka ada kemungkinan refrigerant cair akan masuk ke kompresor yang akan mengakibatkan rusaknya kompresor. Jadi sistem pipa kapiler mensyaratkan suatu pengisian jumlah refrigeran yang tepat.

2. Katup Ekspansi Otomatis

Katup Ekspansi Otomatis bekerja untuk mempertahankan tekanan konstan di evaporator. Bila beban evaporator bertambah maka temperatur evaporator menjadi naik karena banyak cairan refrigeran yang menguap sehingga tekanan di dalam saluran hisap (di evaporator) akan menjadi naik pula. Akibatnya “bellow” akan bertekan ke atas hingga lubang aliran refrigeran akan menyempit dan ciran refrigeran yang masuk ke evaporator menjadi berkurang. Keadaan ini menyebabkan tekanan evaporator akan berkurang dan “bellow” akan tertekanan ke bawah sehingga katup membuka lebar dan cairan refrigeran akan masuk ke evaporator lebih banyak, demikian seterusnya.

3. Katup Ekspansi Termostatik (KET)

Katup Ekspansi Termostatik (KET) adalah satu katup ekspansi yang mempertahankan besarnya panas lanjut pada uap refrigeran di akhir evaporator tetap konstan, apapun kondisi beban di evaporator.

Jika beban bertambah, maka cairan refrigran di evaporator akan lebih banyak menguap, sehingga besarnya suhu panas lanjut di evaporator akan meningkat. Pada akhir evaporator diletakkan tabung sensor suhu (sensing bulb) dari KET tersebut. Peningkatan suhu dari evaporator akan menyebabkan uap atau cairan yang terdapat ditabung sensor suhu tersebut akan menguap (terjadi pemuaian) sehingga tekanannya meningkat. Peningkatan tekanan tersebut akan menekan diafragma ke bawah dan membuka katup lebih lebar. Hal ini menyebabkan cairan refrigeran yang berasal dari kondensor akan lebih banyak masuk ke evaporator. Akibatnya suhu panas lanjut di evaporator kembali pada keadaan normal, dengan kata lain suhu panas lanjut di evaporator dijaga tetap konstan pada segala keadaan beban

EVAPORATOR

Pada evaporator, refrigeran menyerap kalor dari ruangan yang didinginkan. Penyerapan kalor ini menyebabkan refrigeran mendidih dan berubah wujud dari cair menjadi uap (kalor/panas laten).

Panas yang dipindahkan berupa :

1. Panas sensibel (perubahan temperatur)

Temperatur refrigeran yang memasuki evaporator dari katup ekspansi harus demikian sampai temperatur jenuh penguapan (evaporator saturation temparature). Setelah terjadi penguapan, temperatur uap yang meninggalkan evaporator harus pupa dinaikkan untuk mendapatkan kondisi uap panas lanjut (super-heated vapor)

1. Panas laten (perubahan wujud)

Perpindahan panas terjadi penguapan refrigeran. Untuk terjadinya perubahan wujud, diperlukan panas laten. Dalam hal ini perubahan wujud tersebut adalah dari cair menjadi uap atau menguap (evaporasi). Refrigeran akan menyerap panas dari ruang sekelilingnya. Adanya proses perpindahan panas pada evaporator dapat menyebabkan perubahan wujud dari cair menjadi uap.

Kapasitas evaporator adalah kemampuan evaporator untuk menyerap panas dalam periode waktu tertentu dan sangat ditentukan oleh perbedaan temperatur evaporator, sementara perbedaan tempertur evaporator adalah perbedaan antara temperatur jenis evaporator (evaporator saturation temperature) dengan temperatur substansi/benda yang didinginkan.

SIKLUS REFIGRASI

Di dalam suatu alat pendingin (misal lemari es) kalor ditesarap di evaporator dan dibuang ke kondensor. Uap refrigeran yang berasal dari evaporator yang bertekanan dan bertemperatur rendah masuk ke kompresor melalui saluran hisap. Di kompresor, uap refrigerant tersebut dimampatkan, sehingga ketika ke luar dari kompresor, uap refrigeran akan bertekanan dan bersuhu tinggi, jauh lebih tiggi dibanding temperatur udara sekitar. Kemudian uap menunjuk ke kondensor melalui saluran tekan. Di kondensor, uap tersebut akan melepaskan kalor, sehingga akan berubah fasa dari uap menjadi cair (terkondensasi) dan selanjutnya cairan tersebut terkumpul di penampungan cairan refrigeran. Cairan refrigeran yang bertekanan tinggi mengalir dari penampung refrigean ke katup ekspansi. Keluar dari katup ekspansi tekanan menjadi sangat berkurang dan akibatnya cairan refrigeran bersuhu sangat rendah. Pada saat itulah cairan tersebut mulai menguap yaitu di evaporator, dengan menyeap kalor dari sekitarnya hingga cairan refrigeran habis menguap. Akibatnya evaporator menjadi dingin. Bagian inilah yang dimanfaatkan untuk mengawetkan bahan makanan atau untuk mendinginkan ruangan. Kemudian uap rifregean akan dihisap oleh kompresor dan demikian seterusnya proses-proses tersebut berulang kembali.

pendingin

  1. Kompresor
Kompresor mempunyai fungsi untuk menghisap bahan pendingin (refrigeran) kemudian memampatkan bahan pendingin tersebut sehingga bahan pendingin tersebut mempunyai tekanan dan temperatur yang tinggi. Jenis kompresor yang digunakan pada alat uji ini adalah kompresor jenis rotari.
  1. Kondensor

Kondensor merupakan tempat untuk melepas kalor dari bahan pendingin ke media pendingin. Pada kondesor terjadi proses pengembunan bahan pendingin karena lepasnya kalor dari bahan pendingin ke media pendingin. Bahan pendingin setelah melewati kondensor akan berubah menjadi cair dengan tekanan yang masih tinggi. Tipe kondensor yang digunakan pada alat ini adalah kondensor dengan pendinginan air, jadi air digunakan sebagai media pendingin. Air sebagai pendingin kondensor disirkulasikan dengan menggunakan pompa air.

  1. Receiver

Receiver digunakan untuk menampung sementara waktu bahan pendingin yang mengembun di dalam kondensor sebelum masuk ke katup ekspansi. Disamping itu, receiver juga berfungsi untuk menampung bahan pendingin dari mesin pendingin pada waktu mesin direparasi atau berhenti bekerja untuk suatu jangka waktu lama.

  1. Filter Drier

Filter drier digunakan untuk menyaring kotoran yang mungkin terbawa di dalam bahan pendingin yang bersirkulasi dan menghilangkan uap air dari bahan pendingin sebelum masuk katup ekspansi. Kotoran tersebut dapat mengendap atau menempel di katup ekspansi dan katu hisap atau katup buang kompresor, sehingga dapat mengganggu kerja kompresor dan merusak bantalan dan penyekat poros.

  1. Katup ekspansi

Katup ekspansi dipergunakan untuk mengekspansikan secara adiabatik cairan bahan pendingin yang bertekanan tinggi sampai mencapai tingkat keadaan tekanan dan temperatur rendah. Selain itu katup ekspansi mengatur pemasukan refrigeran sesuai dengan beban pendinginan yang harus dilayani oleh evaporator. Katup ekspansi yang digunakan pada alat ini adalah katup ekspansi manual.

  1. Evaporator

Evaporator merupakan tempat untuk menyerap kalor dari produk untuk menguapkan bahan pendingin. Pada evaporator terjadi proses penguapan bahan pendingin, karena bahan pendingin tersebut menyerap kalor dari produk, sehingga ketika keluar dari evaporator bahan bahan pendingin berubah fase menjadi uap bertekanan dan bertemperatur rendah. Produk pada alat uji ini yang kalornya diserap oleh bahan pendingin adalah air.

  1. Pompa air

Pompa air berfungsi untuk mesirkulasikan air di dalam kondensor dan di dalam evaporator.

  1. Pemanas

Pemanas digunakan untuk memanaskan air sebelum masuk evaporator. Air yang dipanaskan tersebut berfungsi sebagai variasi beban pendinginan pada evaporator.

  1. Katup searah
Katup searah berfungsi untuk mencegah terjadinya aliran balik pada sistem.

Mengenal komponen Refigerasi

mengenal komponen-komponen utama sebuah sistem refrigerasi mekanik

1.Kondenser
Kondenser adalah komponen di mana terjadi proses perubahan fasa refrigeran, dari fasa uap menjadi fasa cair. Dari proses kondensasi (pengembunan) yang terjadi di dalamnya itulah maka komponen ini mendapatkan namanya. Proses kondensasi akan berlangsung apabila refrigeran dapat melepaskan kalor yang dikandungnya. Kalor tersebut dilepaskan dan dibuang ke lingkungan. Agar kalor dapat lepas ke lingkungan, maka suhu kondensasi (Tkd) harus lebih tinggi dari suhu lingkungan (Tling). Karena refrigeran adalah zat yang sangat mudah menguap, maka agar dapat dia dikondensasikan haruslah dibuat bertekanan tinggi. Maka, kondenser adalah bagian di mana refrigeran

bertekanan tinggi (Pkd = high pressure–HP).

II.4.2. Piranti ekspansi(expansiondevice–EXD)

Piranti ini berfungsi seperti sebuah gerbang yang mengatur banyaknya refrigeran cair yang boleh mengalir dari kondenser ke evaporator. Oleh sebab itu piranti ini sering juga dinamakan refrigerant flow controller. Dalam berbagai buku teks Termodinamika, proses yang berlangsung dalam piranti ini biasanya disebut throttling process. Besarnya laju aliran refrigeran merupakan salah satu faktor yang menentukan besarnya kapasitas refrigerasi. Untuk sistem refrigerasi yang kecil, maka laju aliran refrigeran yang diperlukan juga kecil saja. Sebaliknya unit atau sistem refrigerasi yang besar akan mempunyai laju aliran refrigeran yang besar pula. Terdapat beberapa jenis piranti ekspansi. Di bawah ini diterakan beberapa di antaranya.

a. Pipa kapiler (capillary tube CT).

Berupa pipa kecil dari tembaga dengan lubang berdiameter sekitar 1 mm, dengan panjang yang disesuaikan dengan keperluannya hingga beberapa meter. Pada berbagai unit refrigerasi yang menggunakannya pipa ini biasanya diuntai agar terlindung dari kerusakan dan ringkas penempatannya. Lubang saluran yang sempit dan panjangnya pipa kapiler ini merupakan hambatan bagi aliran refrigeran yang melintasinya; hambatan itulah yang membatasi besarnya aliran itu. Pipa kapiler ini menghasilkan aliran yang konstan.

b. Katup ekspansi tangan (hand/manual expansion valve – HEV).

Adalah pengatur aliran yang berupa katup atau keran biasa, yang dioperasikan untuk mengatur bukaannya secara manual.


c. Katup ekspansi termostatik (Thermostatic expansion valve – TEV).

Pada piranti ini terdapat bagian yang dapat bekerja secara termostatik, yaitu mempunyai sensor suhu yang dilekatkan pada bagian keluaran evaporator. Perubahan suhu yang terjadi pada keluaran evaporator itu menjadi indikator besar-kecilnya beban refrigerasi. Variasi suhu itu dimanfaatkan untuk mengatur bukaan TEV, sehingga besarnya laju aliran melintasinya juga menjadi terkontrol.

d. Katup pelampung (float valve FV).

Piranti ekspansi jenis ini biasanya dirangkaikan dengan evaporator jenis ‘genangan’ (flooded evaporator, wet evaporator). Ketinggian muka (level) cairan dalam tandon (reservoir) cairan evaporator menjadi pendorong pelampung yang menjadi

pengatur besarnya bukaan katup.

3. Evaporator (evaporator – EV)

Evaporator adalah komponen di mana cairan refrigeran yang masuk ke dalamnya akan menguap. Proses penguapan (evaporation) itu terjadi karena cairan refrigeran menyerap kalor, yaitu yang merupakan beban refrigerasi sistem. Terdapat dua jenis

Evaporator yaitu:

· Evaporator ekspansi langsung (direct/dry expansion type - DX).

Pada evaporator ini terdapat bagian, yaitu di bagian keluarannya, yang dirancang selalu terjaga ‘kering’, artinya di bagian itu refrigeran yang berfasa cair telah habis menguap sebelum terhisap keluar ke saluran masuk kompresor.

· Evaporator genangan (flooded/wet expansion type).

Pada evaporator jenis ini seluruh permukaan bagian dalam evaporator selalu dibanjiri, atau bersentuhan, dengan refrigeran yang berbentuk cair. Terdapat sebuah tandon (reservoir, low pressure receiver), di mana cairan refrigeran terkumpul, dan dari bagian atas tandon tersebut uap refrigeran yang terbentuk dalam evaporator tersebut dihisap masuk ke kompresor.

4. Kompresor (compressor – CP)

Kompresor adalah komponen yang merupakan jantung dari sistem refrigerasi. Kompresor bekerja menghisap uap refrigeran dari evaporator dan mendorongnya dengan cara kompresi agar mengalir masuk ke kondenser. Karena kompresor mengalirkan refrigeran sementara piranti ekspansi membatasi alirannya, maka di antara kedua komponen itu terbangkitkan perbedaan tekanan, yaitu: di kondenser tekanan refrigeran menjadi tinggi (high pressure – HP), sedangkan di evaporator tekanan refrigeran menjadi rendah (low pressure – LP).

II.5. Diagram Siklus Kompresi Uap

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak digunakan dalam daur refrigerasi, pada daur ini terjadi proses kompresi (1 ke 2), pengembunan( 2 ke 3), ekspansi (3 ke 4) dan penguapan (4 ke 1)

Kompresi mengisap uap refrigeran dari sisi keluar evaporator, tekanan dan temperatur diusahakan tetap rendah agar refrigeran senantiasa berada dalam fase gas.

Didalam kompresor, uap refrigeran ditekan (dikompresi) sehingga tekanan dan temperatur tinggi. Energi yang diperlukan untuk kompresi diberikan oleh motor listrik atau penggerak mula lainnya. Jadi, dalam proses kompresi energi diberikan kepada uap refrigeran. Pada waktu uap refrigeran dihisap masuk ke dalam kompresor, temperature masih rendah akan tetapi selama proses kompresi berlangsung, temperatur dan tekanan naik. Setelah proses kompresi, uap refrigeran (fluida kerja) mengalami proses kondensasi pada kondensor. Uap refrigeran yang bertekanan dan bertemperatur tinggi pada akhir kompresi dapat dicairkan dengan media pendinginnya fluida air atau udara. Dengan kata lain, uap refrigeran memberikan panasnya (kalor laten pengembunan) kepada air pendingin atau udara pendingin melalui dinding kondensor.

Karena air atau udarapendingin menyerap panas dari refrigeran, maka temperaturnya menjadi lebih tinggi pada waktu keluar dari kondensor. Selama refrigeran mengalami perubahan dari fase gas (uap) ke fase cair, tekanan dan temperatur konstan, oleh karena itu pada proses ini refrigeran mengeluarkan energi dalam bentuk panas.

Senin, 30 Maret 2009

sejarah refrigerasi

Sejarah Refrigerasi
Saat ini setidaknya ada tiga isu umum besar yang terkait dengan bidang refrigerasi, yaitu energi, penipisan ozon, dan pemanasan global. Isu-isu terkini tersebut mendorong dan menuntun para ahli dan pekerja di bidang refrigerasi dalam mencoba memecahkan berbagai persoalan yang terlingkup di dalamnya. Bukan lagi menjadi hal yang sederhana untuk menselaraskan ketiga hal tersebut karena di dalamnya berperan berbagai disiplin ilmu pengetahuan dan teknologi, upaya pelestarian lingkungan dan keselamatan makhluk hidup, dan kepentingan ekonomi –yang biasanya juga lekat dengan kepentingan politik, khususnya bagi negara-negara maju.

Di balik maraknya isu refrigerasi terkini, sedikit menyelami sejarah refrigerasi masa lalu bisa menjadi sebuah kebutuhan dan keasikan tersendiri. Orang bijak bilang bahwa sejarah bisa memberikan banyak pelajaran berharga, tentu dengan sudut pandang masing-masing.

Tidak serumit saat ini, sejarah awal refrigerasi dahulu sangat lekat dengan upaya manusia untuk mengawetkan makanannya, setidaknya sampai ditemukannya refrigerasi mekanik yang kemudian membawa refrigerasi dari satu topik isu ke topik isu lainnya. Di masa lalu (diantaranya) manusia menyimpan makanannya di dalam gua atau batu-batu yang dindingnya dingin secara alami. Dalam koleksi puisi China kuno, Shi Ching, terdapat catatan penggunaan gudang es bawah tanah pada tahun 1000 SM. Orang-orang Yunani dan Romawi dulu telah membuat gudang salju bawah tanah, di mana mereka menyimpan salju yang telah dipadatkan dan menginsulasinya dengan rumput, tanah, dan pupuk kotoran hewan. Pliny the Elder menulis tentang penyakit akibat minuman dingin, dan Kaisar Nero mengatakan pendinginan buah-buahan dilakukan dengan menyimpannya di kotak di dalam salju. Orang-orang India, Mesir, dan Estonia mendinginkan air dan membuat es dengan meletakkan air di tempat yang rendah, dalam wadah tanah liat, dan membiarkannya sepanjang malam di lubang di bawah tanah. Penduduk Pulau Crete di Mediteranian, pada sekitar tahun 2000 SM telah menyadari bahwa suhu yang rendah adalah sangat penting untuk pengawetan makanan. Penelusuran budaya masyarakat Minoan di Cyprus menunjukkan konstruksi gudang bawah tanah dibuat untuk menyimpan es saat musim dingin, dan kemudian digunakan untuk menyimpan makanan saat musim panas. Beberapa catatan menunjukkan bahwa Alexander Agung di sekitar tahun 300 SM memberikan tentaranya minuman yang didinginkan dengan salju untuk meningkatkan semangat tentaranya; pada tahun 755 M Khalif Madhi mengoperasikan transportasi dari Lebanon melintasi padang pasir ke Mekkah yang dilengkapi dengan sistem refrigerasi yang menggunakan salju sebagai refrigerantnya; pada tahun 1040 M Sultan Kairo menggunakan salju untuk mengangkut kebutuhan dapurnya dari Syiria setiap hari. Sejak masa lampau masyarakat Arab telah mengetahui bagaimana menjaga air agar tetap dingin dengan menyimpannya di kendi yang terbuat dari tanah; cara ini juga banyak dijumpai di berbagai daerah di Indonesia, namun entah kapan permulaannya. Awal abad keempat Masehi, orang-orang Hindia Barat telah mengetahui bahwa sejumlah garam, seperti sodium nitrat, bila dicampur dalam air akan mengakibatkan suhu yang lebih rendah.

Di Amerika Serikat, khususnya di sekitar Sungai Hudson dan Maine, pada pertengahan abad 19 M memiliki perdagangan penting es alam. Di Eropa pada masa yang sama, balok es alam dari Norway sangat diminati. Sejak tahun 1805 hingga akhir abad 19 M, kapal-kapal layar mengangkut es alam dari Amerika Utara ke berbagai negara yang lebih hangat seperti Hindia Barat, Eropa, dan bahkan India dan Australia; pada 1872, 225 ribu ton es alam diangkut ke daerah-daerah tersebut. Pada permulaan tahun 1806 kapal laut Favorite berlayar ke pelabuhan St. Pierre, Martinique (di daerah Karibia), dengan membawa 130 ton balok es. Pelayaran ini diduga sebagai misi dagang skala besar pertama di bidang refrigerasi, sang pemilik kapal ini adalah Frederic Tudor. Karena kala itu es belum dikenal di Martinique dan tidak ada fasilitas penyimpanannya, maka biaya yang dibutuhkan menjadi besar, namun itu dapat diatasi oleh Tudor. Bersama seorang pemilik rumah makan, ia membuat dan memperkenalkan es krim (ice cream) di Hindia Barat, di mana makanan penutup dingin belumlah dikenal kala itu.

Beberapa tahun kemudian, dengan dibangunnya gudang es di St. Pierre dan dengan digunakannya serbuk kayu cemara sebagai insulasi sepanjang perjalanan transportasi kargo es-nya, Tudor mengembangkan idenya hingga menjadi sebuah bisnis yang menguntungkan. Ia membuat kontrak kerja untuk memotong es di kolam-kolam dan sungai-sungai sepanjang New England dan mengirimnya ke berbagai tujuan, tidak hanya ke Hindia Barat dan Amerika Serikat bagian selatan, namun juga ke tempat-tempat jauh seperti Amerika Selatan, Persia, India, dan Hindia Timur. Tahun 1849 total kargonya mencapai 150 ribu ton es; hingga tahun 1864 ia telah mengapalkan es-nya ke 53 pelabuhan di berbagai bagian dunia. Bisnis yang ia temukan telah mengubah hidup dan kebiasaan orang di seluruh dunia, dan metode yang digunakannya masih terus digunakan hingga pada tahun 1880-an digantikan dengan produksi es buatan dengan mesin.

Saat ini refrigerasi mekanika telah jauh lebih baik dari masa lalu, berbagai tipe kompresor dan daur refrigerasi telah digunakan. Dapat dikatakan bahwa refrigerasi mekanika pertama kali diperkenalkan oleh William Cullen, berkebangsaan Scot, yang pada tahun 1755 membuat es dengan mengevaporasi ether pada tekanan rendah. Pada 1810 Sir John Lesley untuk pertama kalinya berhasil membuat es dengan mesin yang memakai prinsip serupa. Tonggak sejarah pengembangan refrigerasi adalah pada tahun 1834 ketika Jacob Perkins, berkebangsaan Amerika, mendapatkan paten nomer 6662 dari Inggris untuk mesin kompresi uap – yang saat ini prinsipnya banyak digunakan dalam sistem refrigerasi. Perkins menyatakan suatu siklus tertutup yang meliputi evaporasi dan kondensasi dengan memanfaatkan suatu fluida untuk mendinginkan fluida lainnya. Namun apa yang diajukan oleh Perkins masih memerlukan rancangan lebih lanjut. James Harrison, berkebangsaan Scot yang berimigrasi ke Australia pada tahun 1837, menemukan sebuah mesin pendingin pada sekitar awal tahun 1850, dan Alexander Twinning memproduksi satu ton es per hari pada tahun 1856 in Cleveland, Ohio. Pada tahun 1851 Dr. John Gorrie dari Florida mendapatkan paten Amerika pertama untuk mesin es yang menggunakan udara terkompresi sebagai refrigeran. Sebagai seorang ahli Físika ia terdorong untuk meringankan penderitaan orang yang terkena demam dan lainnya yang menimbulkan suhu tinggi. Profesor A.C. Twining dari New Haven mengembangkan mesin Gorrie tersebut dengan menggunakan sulfuric ether. Dr. James Harrison dari Australia juga mengembangkan mesin dengan sulfuric ether dan pada tahun 1860 ia membuat pemasangan perangkat refrigerasi pada industri. Pada tahun 1861 Dr. Alexander Kira dari Inggris membuat mesin dengan udara dingin yang serupa dengan mesin Gorrie; mesinnya mengkonsumsi satu pon batu bara untuk menghasilkan empat pon es. Carl von Linde menjelaskan refrigerasi dengan teori termodinamika, ilmuwan-ilmuwan lainnya, dari Inggris, Jerman, Perancis, Amerika dan Belanda telah berkontribusi dalam pengembangan refrigerasi: seperti Carre, Black, Faraday, Carnot, Joule, Mayer, Clausius, Thompson, Thomson (Lord Kelvin), Helmholtz dan Kamrelingh Onnes.

Pada peralihan abad 19-20, kompresor masih digerakkan oleh uap dengan kecepatan maksimum 50rpm. Di tahun 1900 industri refrigerasi kental diwarnai oleh peralihan dari konsumsi es alami ke es buatan, dan persaingan antara manfaat kedua produk tersebut berlangsung sekitar 15 tahun. Pada kisaran tahun tersebut ice-cream menjadi sebuah industri yang mulai menarik, demikian juga beberapa aplikasi refrigerasi lainnya seperti untuk arena luncur es, penyimpanan bulu pendinginan air minum, dan juga air conditioning untuk pembuatan film untuk kamera, roti dan permen. Air conditioning dengan kapasitas pendinginan 450ton untuk pertama kalinya dipasang di New York Stock Exchange, dan system yang sama pada waktu yang hampir sama juga dipasang di sebuah teater Jerman. Tahun 1905 Gardner T. Voorchees mempatenkan kompresor (multiple-effect compressor) temuannya, dimana gas refrigerant dari dua evaporator dengan tekanan berbeda bisa ditarik dan ditekan dalam satu silinder tunggal; menariknya, penemuannya baru dikembangkan 40 tahun kemudian. Memasuki tahun 1911 kecepatan kompresor meningkat menjadi antara 100 hingga 300rpm, dan pada tahun 1915 untuk pertama kalinya kompresor dua tingkat dioperasikan. Sistem ini masih belum baik, dan dipakai hingga tahun 1940. Setelah Perang Dunia Pertama, Biro Standar Nasional Amerika membuat rumusan yang akurat untuk panas laten untuk es, sehingga perancangan sistem refrigerasi menjadi lebih baik. Perkembangan selanjutnya kompresor rotary dan unit steam-jet mulai digunakan, dan refrigerasi menjadi umum digunakan di industri minyak.

Perkembangan-perkembangan di awal abad 20 tersebut sangat menarik, mengingat pada tahun 1890an –menurut ahli sejarah Stewart Holbrook, Lost Men of American History– air soda dan ice-cream menjadi objek serangan dalam khotbah keagamaan saat itu, bahkan di kota-kota tertentu di Midwest air soda dan ice-cream dilarang secara hukum, selain itu juga adanya anggapan bahwa gudang pendinginan dan es buatan tidak baik untuk kesehatan, juga anggapan bahwa kecepatan kompresor melebihi 100rpm adalah hampir tidak mungkin dibuat. Melihat fakta-fakta saat ini tentu saja penolakan-penolakan tersebut tampak menggelikan. Kompresor, yang merupakan bagian penting dari sistem refrigerasi, pada perkembangan selanjutnya dapat dibuat dengan kecepatan yang lebih tinggi, ukuran yang lebih kecil, dan menggunakan multi-silinder.

Lonjakan produksi dalam industri refrigerasi dan air conditioning terjadi mulai tahun 1930an. Refrigerasi di USA pada tahun 1940 mengambil bagian lebih dari 13% (energi) dari total perdagangan peralatan mesin saat itu. Perdagangan refrigerasi saat itu setidaknya bisa diklasifikasikan menjadi empat bagian, yaitu: refrigerasi untuk rumah tangga menempati urutan pertama, yang diikuti oleh refrigerasi untuk industri, air conditioning, dan refrigerasi komersial. Pada tahun 1960, diperkirakan dari 50juta rumah yang tersambung aliran listrik di USA, 49juta (98%) diantaranya memiliki refrigerator. Setelah 1960, perdagangan freezer untuk industri tercatat melebihi refrigerator untuk rumah tangga. Perdagangan unit pendingin lainnya seperti untuk gudang, tempat tinggal, mobil dan kereta total nilainya mencapai milyaran dollar per tahun di tahun 1960an.

Sejalan dengan kebutuhan dan perkembangannya, variasi aplikasi refrigerasi dan air conditioning terus bertambah. Angkutan untuk produk-produk dari industri makanan dan minuman serta pertanian dan perternakan-perikanan juga mendorong meningkatnya perkembangan dan perdagangan dalam industri refrigerasi dan air conditioning. Di bidang industri, refrigerasi mampu membantu meningkatkan efisiensi sistem, dan juga mampu menjadi solusi bagi proses-proses industri yang membutuhkan temperatur rendah. Demikian pula air conditioning, menjadi solusi bagi proses-proses industri yang membutuhkan pengaturan kondisi udara tertentu. Dalam bidang medis, refrigerasi dan air conditioning bukan hanya mengambil peran yg terkait dengan instrumen medis, namun juga penanganan obat-obatan serta zat-zat lainnya yang memerlukan perlakuan pada temperatur tertentu, bahkan juga proses-proses operasi medis.

Refrigerasi dan Air Conditioning Kini

Penipisan lapisan ozon, pemanasan global, dan efisiensi energi dan material merupakan tema utama dalam bidang refrigerasi dan air conditioning saat ini. Montreal Protocol, yang kemudian dilanjutkan dengan Kyoto Protocol telah membuat banyak agenda yang terkait dengan penyikapan terhadap tema-tema utama tersebut, yang tentu saja ini membuat bidang refrigerasi semakin dinamis.

Dalam hal refrigerant, produksi dan pemakaian refrigerant yang menyebabkan penipisan lapisan ozon dan peningkatan panas global sudah ada yang dihentikan, dan beberapa dijadwalkan untuk dihentikan. Terjadi peralihan dari refrigerant HCFCs ke HFCs untuk menghentikan kontribusi refrigerasi pada penipisan lapisan ozon. Guna menghentikan kontribusi refrigerasi pada pemanasan global, peralihan selanjutnya adalah dari HFCs ke refrigerant natural, termasuk di dalamnya adalah refrigerant hidrokarbon.

Peningkatan efisiensi sistem refrigerasi meliputi cakupan yang sangat luas, sehingga mendorong munculnya study dan inovasi dalam level yang lebih spesifik. Dalam lingkup komponen refrigerasi, sebut saja kompresor, evaporator, kondenser, dan katub ekspansi (dengan berbagai tipe dan ukurannya) merupakan komponen-komponen utama yang lebih akrab didengar. Selain itu ada piping, injector, oil separtor, defroster, ekonomizer, dan banyak lainnya menjadi study penting dalam peningkatan efisiensi sistem. Dalam lingkup sistem, berbagai inovasi tipe sistem refrigerasi beserta sistem kontrolnya telah mengalami banyak perkembangan. Karena konsumsi energi untuk Refrigerasi dan Air Conditioning untuk suatu gedung mengambil bagian yang cukup besar, maka Refrigerasi dan Air Conditioning memainkan peran penting dalam konsep intelligent building, demikian pula dalam konsep ZERO NET ENERGY yang dipelopori oleh ASHRAE yang diharapkan mampu terealisasi pada 2030. Demikian pula dalam hal efisiensi material, berbagai material untuk peruntukan komponen masing-masing terus dikaji untuk memberikan efisiensi yang lebih baik.

Dalam hal perdagangan Refrigerasi dan Air Conditioning, sebuah artikel terbaru (Oktober 2007) yang dikutip ASHRAE menunjukkan suatu kejutan. Amerika boleh jadi merupakan rahim dari teknologi Refrigerasi dan Air Conditioning, namun bukan berarti akan seterusnya memegang kendali perdagangan di bidang ini. Saat ini, dari lima perusahaan terbesar yang menguasai pasar Refrigerasi dan Air Conditioning, dua posisi teratas dipegang oleh perusahaan China, kemudian disusul dua perusahaan dari Korea Selatan, dan ditutup oleh sebuah perusahaan Jepang. Perusahaan-perusahaan China mampu menguasai 70% pasar dunia. Di kawasan Asia Tenggara, hanya Thailand yang bisa bermain signifikan di pasar ini. Data-data tersebut selayaknya mampu lebih memacu Indonesia untuk juga bisa menjadi pemain yang diperhitungkan, setidaknya bisa dimulai di arena regional.

IIR –International Institute of Refrigeration dalam sebuah konferensinya di Agustus 2007 memberikan sebuah laporan menarik, bahwa produk agrikultur (termasuk perikanan laut dan tawar) dunia saat ini yang perlu mendapatkan perlakuan refrigerasi mencapai 5,5 milyar ton, namun baru sekitar 400 juta ton yang ditangani. IIR memprediksi 1,8 milyar ton dari produk-produk tersebut akan memberikan keuntungan bagi industri storage dan transport refrigerasi. Sekali lagi, data ini bisa menjadi suatu kesempatan menarik bagi industri agrikultur (serta produk turunannya) dan refrigerasi Indonesia.

Bila kini China mampu menjadi produsen terbesar untuk produk-produk Refrigerasi dan Air Conditioning –setelah menyalip Amerika, Eropa, Jepang dan Korea Selatan–, kesempatan itu pasti juga dimiliki oleh setiap bangsa, termasuk Indonesia. Indonesia dengan segala karakteristiknya memerlukan sentuhan Refrigerasi dan Air Conditioning yang disesuaikan dengan karakternya tersebut. Bahasan tentang hal ini penulis harap bisa disampaikan dalam tulisan tersendiri di lain kesempatan, dengan memperhatikan berbagai potensi nasional dan tiap-tiap daerah di Indonesia, sehingga diharapkan bisa menjadi bagian kontribusi kebaikan bagi pembangunan nasional dan daerah.

Sumber:
http://pamitran.wordpress.com/2007/11/21/sekilas-sejarah-refrigerasi/

pendingin

a. Pipa kapiler (capillary tube CT).

Berupa pipa kecil dari tembaga dengan lubang berdiameter sekitar 1 mm, dengan panjang yang disesuaikan dengan keperluannya hingga beberapa meter. Pada berbagai unit refrigerasi yang menggunakannya pipa ini biasanya diuntai agar terlindung dari kerusakan dan ringkas penempatannya. Lubang saluran yang sempit dan panjangnya pipa kapiler ini merupakan hambatan bagi aliran refrigeran yang melintasinya; hambatan itulah yang membatasi besarnya aliran itu. Pipa kapiler ini menghasilkan aliran yang konstan.

b. Katup ekspansi tangan (hand/manual expansion valve – HEV).

Adalah pengatur aliran yang berupa katup atau keran biasa, yang dioperasikan untuk mengatur bukaannya secara manual.


c. Katup ekspansi termostatik (Thermostatic expansion valve – TEV).

Pada piranti ini terdapat bagian yang dapat bekerja secara termostatik, yaitu mempunyai sensor suhu yang dilekatkan pada bagian keluaran evaporator. Perubahan suhu yang terjadi pada keluaran evaporator itu menjadi indikator besar-kecilnya beban refrigerasi. Variasi suhu itu dimanfaatkan untuk mengatur bukaan TEV, sehingga besarnya laju aliran melintasinya juga menjadi terkontrol.

d. Katup pelampung (float valve FV).

Piranti ekspansi jenis ini biasanya dirangkaikan dengan evaporator jenis ‘genangan’ (flooded evaporator, wet evaporator). Ketinggian muka (level) cairan dalam tandon (reservoir) cairan evaporator menjadi pendorong pelampung yang menjadi

pengatur besarnya bukaan katup.

3. Evaporator (evaporator – EV)

Evaporator adalah komponen di mana cairan refrigeran yang masuk ke dalamnya akan menguap. Proses penguapan (evaporation) itu terjadi karena cairan refrigeran menyerap kalor, yaitu yang merupakan beban refrigerasi sistem. Terdapat dua jenis

Evaporator yaitu:

· Evaporator ekspansi langsung (direct/dry expansion type - DX).

Pada evaporator ini terdapat bagian, yaitu di bagian keluarannya, yang dirancang selalu terjaga ‘kering’, artinya di bagian itu refrigeran yang berfasa cair telah habis menguap sebelum terhisap keluar ke saluran masuk kompresor.

· Evaporator genangan (flooded/wet expansion type).

Pada evaporator jenis ini seluruh permukaan bagian dalam evaporator selalu dibanjiri, atau bersentuhan, dengan refrigeran yang berbentuk cair. Terdapat sebuah tandon (reservoir, low pressure receiver), di mana cairan refrigeran terkumpul, dan dari bagian atas tandon tersebut uap refrigeran yang terbentuk dalam evaporator tersebut dihisap masuk ke kompresor.

4. Kompresor (compressor – CP)

Kompresor adalah komponen yang merupakan jantung dari sistem refrigerasi. Kompresor bekerja menghisap uap refrigeran dari evaporator dan mendorongnya dengan cara kompresi agar mengalir masuk ke kondenser. Karena kompresor mengalirkan refrigeran sementara piranti ekspansi membatasi alirannya, maka di antara kedua komponen itu terbangkitkan perbedaan tekanan, yaitu: di kondenser tekanan refrigeran menjadi tinggi (high pressure – HP), sedangkan di evaporator tekanan refrigeran menjadi rendah (low pressure – LP).

II.5. Diagram Siklus Kompresi Uap

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak digunakan dalam daur refrigerasi, pada daur ini terjadi proses kompresi (1 ke 2), pengembunan( 2 ke 3), ekspansi (3 ke 4) dan penguapan (4 ke 1)

Kompresi mengisap uap refrigeran dari sisi keluar evaporator, tekanan dan temperatur diusahakan tetap rendah agar refrigeran senantiasa berada dalam fase gas.

Didalam kompresor, uap refrigeran ditekan (dikompresi) sehingga tekanan dan temperatur tinggi. Energi yang diperlukan untuk kompresi diberikan oleh motor listrik atau penggerak mula lainnya. Jadi, dalam proses kompresi energi diberikan kepada uap refrigeran. Pada waktu uap refrigeran dihisap masuk ke dalam kompresor, temperature masih rendah akan tetapi selama proses kompresi berlangsung, temperatur dan tekanan naik. Setelah proses kompresi, uap refrigeran (fluida kerja) mengalami proses kondensasi pada kondensor. Uap refrigeran yang bertekanan dan bertemperatur tinggi pada akhir kompresi dapat dicairkan dengan media pendinginnya fluida air atau udara. Dengan kata lain, uap refrigeran memberikan panasnya (kalor laten pengembunan) kepada air pendingin atau udara pendingin melalui dinding kondensor.

Karena air atau udarapendingin menyerap panas dari refrigeran, maka temperaturnya menjadi lebih tinggi pada waktu keluar dari kondensor. Selama refrigeran mengalami perubahan dari fase gas (uap) ke fase cair, tekanan dan temperatur konstan, oleh karena itu pada proses ini refrigeran mengeluarkan energi dalam bentuk panas.